

Description, selection and feedbacks of use of MV VSD technologies in Oil&Gas

Faradj TAYAT, Total SA Edouard THIBAUT, Total SA

Summary

- Why using variable speed ?
- Mains Medium Voltage VSD's used in O&G
- Power semi-conductors used
- Load Commutated Inverter LCI
- Voltage Source Inverter VSI
- VSD cooling
- Return of EXperiences REX

Why using variable speed ?

Well adapted with upstream production where process operating points change with reservoir depletion

Why using variable speed?

Efficiency allows to consume only what is needed

FPSO case example

FPSO with fixed motor

Needs 5 Gas turbine to handle power consumption

Same FPSO with Variable Speed Drive

- Needs 4 Gas turbine to handle power consumption
- After year 8, large power available to tiein production from new wells/reservoirs

Why using variable speed?

Improved stability for electrical network

•No inrush current during motor start

Motor mechanical lifetime

•Less mechanical constraints on the motor and its driven load (soft start)

Availability

•No limitation of number of start compared to DOL start

VSD, VSDS, SFC,....

VSD can also be called:

- ASD (Adjustable Speed Drive)
- VFD (Variable Frequency Drive)
- PDS (Power Drive Systems)
- SFC (Static Frequency Converter)

VSDS Main Components

SwitchgearIsolate, protect, connect and disconnect VSD Power SectionHarmonic filterRedirect harmonics generated by the VSD and to keep the power factor close
to 1TransformerAdjust the grid voltage to the VSD voltage and limit short circuit current of
the VSD section.VSD:Generate variable voltage and frequency to drive the motor
Convert electrical power into mechanical power

PCIC EUROPE

7

Mains Medium Voltage VSD's used in O&G

Direct converter not presented in this tutorial

Power semi-conductors used in LCI and VSI

Thyristor is used in LCI (Load Commutated Inverter)

IGCT Integrated Gate-Commutated Thyristor

- GTO and IGCT have been developed to enable these devices to be turned on and off
- IGCT is an improved GTO with less losses, faster to switch and it is easier to implement than GTO
- In O&G, GTO and IGCT are mainly used in VSI (Voltage Source Inverter)

IGBT Insulated Gate Bipolar Transistor

- Transistor type can be turned on and off easily ٠
- IGBT combines many transistors in parallel in one housing to handle large current ٠
- IGBT has a high switching frequency ٠
- IGBT flat pack is only cooled on one side there is current limitation compared to press pack design ٠
- IGBT fails open -> for N+1 redundancy (multi level VSD) there is need to configure it inside a power ٠ cell and to install bypass switch to continue operation of the VSD

Uak

IGBT

Command

Uak

IGBT Insulated Gate Bipolar Transistor IEGT Injection Enhanced Gate Transistor.

- IEGT combines as well many transistors in parallel in one housing
- IEGT has lower switching frequency than IGBT
- Fails short -> possibility of N+1 redundancy
- Press Pack IEGT provides larger current capability than IGBT with less conduction losses
- IGBT and IEGT in O&G are used in VSI (Voltage Source Inverter)

Mains Medium Voltage VSDS's used in O&G

MV VSD's in Oil & Gas mainly used today

LCI Load Commutated Inverter

LCI invention

LCI patented by AEG (Germany) in 1936 for railway application using mercury vapor valve nowadays replaced by thyristor valve

LCI (Load Commutated Inverter)

Graetz Bridge control

LCI control principle

Changing Torque -> Speed variation

 $J.\frac{d\Omega}{dt} = Cm - Cr$

LCI Motor Torque = Cm = k.ld.Coso.Flux

LCI active power flow

4 QUADRANTS CAPABILITY

P = Udc.Idc > 0 it means $Udc > 0 - 0^{\circ} < Firing angle < 90^{\circ}$ (Rectifier)

Opposite for Inverter

P = Udc.Idc <0 it means Udc<0 -> 90°<Firing angle<180° (Rectifier)

LCI short circuit power

LCI has large short circuit current on inverter side

since to minimize commutation time, a small sub-transient reactance X" is specified -> large lcc

SINCE LARGE ICC, POWER SECTION CUBICLE SHALL BE ABLE TO WITHSTAND ARC FAULT

Harmonics

In large drive application, to reduce the injection of harmonics to the grid, the rectifier is configured from 6 pulse to 12 pulse

6 pulse topology

12 pulse topology

But generally even in 12 pulse configuration an harmonic filter is used with LCI:

- since 12 pulse is generally not sufficient to achieve harmonics requirement limitations
- for Power Factor compensation due to the reactive power consumption of the LCI rectifier

Residual Harmonics

In theory, for a 12 pulse rectifier, harmonics 5,7,17,19,29,31,41 and 43 should be cancelled.

But due to tolerances/imperfections of control and converter, those harmonics are not completely cancelled

Residual harmonics amplitude can reach from 5% to 15% of those of a 6-pulse converter (IEC 60146-2)

RESIDUAL HARMONICS SHALL NOT BE OVERLOOKED WHEN MAKING HARMONICS STUDIES

Existing harmonics

Existing grid harmonics shall not be overlooked as well when designing harmonics filter to avoid to overload the harmonic filter in normal operation

Harmonics filter location

Direct connection of the Harmonic Filter(HF) to busbar

Advantages

- •Design of the transformer and harmonic filter made in parallel
- •Cost effective solution for MV grid

Limitation of this solution

•Cost of harmonic filter & HV feeder becomes expensive with voltage increase (shall be <90kV)

Harmonics filter location

Connection of the harmonic filter to 4th transformer winding

Advantages

•Less HV feeder and cost of harmonic filter reduced

Drawbacks

•Complex transformer where short circuit impedance Ucc tolerances impact harmonic filter performances

Interharmonics

In addition to harmonics, LCI injects as well interharmonics into the surrounding power system.

Interharmonics are non integer harmonic which are the results of combination of grid and motor frequency **Formula is** [n*FN +/- m*FM]

where FN: grid frequency, FM: Motor frequency

Interharmonics cause torsional oscillations leading to an excess of vibrations

SSTI (Sub Synchronous Torsional Interaction) study to de done to assess potential issues with interharmonics on your plant

VSI Voltage Source Inverter

Capacitor smooth DC voltage ripple

VSI Topologies

Most commonly used VSI in O&G

Diode Front End (DFE)

- Cost effective
- No regeneration capability
- Installation of DC chopper for braking if required
- Rectifier configuration (number of pulse), based on use of multi winding transformer to comply to harmonic requirements

VSI DFE & Harmonics Filter

12 pulse

Usually there is no need for an Harmonic Filter (HF) since:

- the power factor is >0.96 for a DFE (No need to compensate the power factor like for LCI)
- the rectifier configuration (number of pulse) of the transformer is calculated to comply with harmonic limitation requirements and therefore to avoid installation of HF

Nevertheless, if there is a large number of VSI installed with DFE rectifier in operation, a filter can be contemplated to comply with harmonic limitation requirements

VSI AFE rectifier

Active Front End (AFE)

- Regeneration capability (4 quadrants)
- Simpler transformer compare to multi winding of DFE (1 secondary only)
- Low harmonic content at input grid side
- Possibility for transformer less (less equipment, space, weight)
- VSD more expensive/complex
- Possibility of Power Factor 1 and reactive power compensation

Output filters

	Output choke	dV/dt filter	Sine Filter
Noise, mechanical vibrations and torque pulsations			++
Overheating	-		++
Overvoltage stress (differential mode)	+	++	++
Overvoltage stress (common mode)	-	+	++
Motor bearing currents	-	+	++

PCIC EUROPE

37

VSD control

Scalar Control

- Voltage controlled according to U/F to keep constant flux
- Voltage boost to improve starting/performance at low speed due to resistive voltage drop

Applied where:

- Fast response to torque/speed is not required
- If multiple motors are to be supplied from 1 VSD

VSD control principle

VSD control

DTC (Direct Torque Control)

- Inverter is controlled directly by torque and flux reference
- Usually applied when fast torque and speed responses are required.

	Control Mode		
	Scalar Control	Vector Control or DTC	
Torque accuracy	~+/-3%	~+/-1%	
Rising Time	~6 to 10 Cn/s	~50 to 100 Cn/s	
Speed			
Static Accuracy	~+/-0.01%	~+/-0.01%	
Dynamic Accuracy	3% in 1 sec	0.3% in 1 sec	

VSD cooling

MV VSD efficiency rules of the thumbs

VSD cooling

Air cooled MV VSD

- 100% of losses dissipated in air
- Evacuation through duct or HVAC (HVAC to be sized to absorb all losses)
- Arc fault issue (Safety) due to opening in cubicles
- High noise

VSD cooling

Water cooled MV VSD

- Use of deionized water since MV power elements are directly cooled by water
- 95% of losses transfered to water circuit
- 5% of losses dissipated in air (cooling circuit radiation in air) this shall not be forgotten when sizing HVAC unit

Water cooled typical configurations

Water available on site: Use of water to water heat exchager + pump

Pump integrated to the VSD

Heat exchanger can be integrated to the VSD or can be outdoor

Water cooled typical configurations

No water available on site: use of fin fan cooler + pump

For high site temperature (typically >40°C such as Middle East)

Chiller system shall be considered to cool water to avoid VSD large power derating

VSD Cooling in cold ambient <0°C

If the cooling water can experience negative temperature

Glycol shall be added to water to avoid freezing the water

Temperature	Glycol % in volume
+1 °C	0 %
-3 °C	10 %
-10 °C	20 %
-15 °C	30 %
-20 °C	35 %
-25 °C	40 %
-30 °C	45 %

VSD power derating shall be as well checked since glycol heat transfer is less efficient than water

When there is a difference between the room air ambient temperature and the VSD cooling water temperature

Risk of dew point inside the HV section of the converter (arc fault, earth fault)

A 3 way valve shall be installed to avoid dew point by heating up the converter inlet temperature in order to regulate the cooling water temperature above the dew point temperature

Return of EXperiences REX

Return of EXperiences REX: Summary

HV cells

Poor quality control on standard part in the factory

PDCS: Protection relay not properly refresh its data via the network (load shedding priority), loss of parameters, ... Voltage transfo Circuit breaker :Tripping action time not matching with the datasheet

Voltage transformer 11kV explosion due to a short circuit on secondary side.

Monitoring windows broken

No HV fuse found open.

Voltage transformer 36kV explosion due to a short circuit on secondary side.

- zero sequence CT not fixed
- no trefoil trought the MCT
- · Earth cable not pulled

PCIC EUROPE

VT bottom part

the clip was too tight.

Result:

Overall shutdown due to a significant smoke detection

matching with cable sizing Dust ingress,...

VT 11KV

VT 36KV

Cubicle sealing not

52

Power transformer

Poor manufacturing for offshore transformer

Poor assembly made by a "summer worker" and without any quality control in the factory

PCIC EUROPE

Useless splicing at only 5 cm to the goal

Result: 6 months of flaring and lost production

Power transformer

Real short circuit behavior neglected

VSD input transformer behavior under a real short circuit based on "extrapolation" of a standard transformer used for electrical distribution and a DC component not taken into account.

Electrodynamic effect not as per expectation

Result:

6 months of lost production and the critical situation on the similar transformer design deployed on site.

Input Power cables: Junction box

Poor hookup execution found after some years in operation

Ex"p" box lost due to bad welding

Result: JB pressure leak

Input Power cables: Termination head

Poor hookup execution found after some years in operation

Before repair

After repair

Cables overheating: Pulling cables not in trefoil increasing significantly the induced current

VSD (Power and Control)

Control command part : Quality and design issues:

EMC issues with spurious trips

Communication failure

Common mode filter

All shield not properly installed

Spurious trip due to a bad cable shield assembly

Twisted cables After corrective action

VSD (Power and Control)

Quality and design issues

Power Electronic parts : Use inside of the same VSD of core power semi conductors components from different vendors with differents characteristics, no traceability from the VSD vendors

VSD Rectifier: Diode failed led to a DC component into the transformer

- Some functions do not work like controlling the DC bus voltage while the mains voltage dips.
- Discrepancy between drawings and as built VSD

6 (1

Cooling: VFD liquid-to-liquid cooling system

Cooling: VFD liquid-to-liquid cooling system

Several VSD trip due to a bad conductivity control level

PCIC EUROPE

Switching pumps record

Cooling: liquid-to-air cooling system

Overheating issue on HVAC MCC Cabinet

Cooling: Primary side

Quality and design issues

- Need to refill completely cooling circuit when changing power semi-conductor stacks
- Need possibility to change the bottle of resin for deionized water cooling circuit without stopping the drive
- Water cooled VSD need to be refilled regurlarly to compensate micro leakage

Space for repair and maintenance

- Need to be able to change of motor or a pump without dismantling piping
- Need space to be able to change power semiconductor when they fail without dismantling other bulky component

Output Power cables: VSD output termination head

Screen current value neglected while the frequency and the line current are high

Output Power cables: VSD output termination head

Most common failure seen

External failure mark

Earth braid onto the springs

Bad connection of the earth braid because of Insulation tape forgotten

Iscreen = I line

Output Power cables: Termination head

Most common failure seen on site

Poor contact between the cable screen and the ground braid due to a PVC tape forgotten

Poor contact between the cable armor and the ground braid due to the important thickness of the aluminum alloy tapes material.

Kind of Repair

The cable screen has been cut without reason. The effect is to increase the contact resistance, thus overheating.

Output Power cables: Termination head

Induced current calculation: a Case study for High-speed motor

Ishield/Icore=70%

Power cables: Splicing in hazardous area

Splicing between topside cables and subsea cables on riser balcony

Thermal camera 90°C surface temperature at mid load

Result: Production of the pump line are limited because the problem did not solve yet.

Output Power cables: Splicing in hazardous area

Splicing's dismantling

Output Power cables: Splicing in hazardous area

Example of design modification agreed with the manufacturer

Return of experiences

Conclusion

Human ressources issues

- Lack of skilled/experienced commissioning engineer, not able to:
 - Investigate/correct issues
 - Tune properly the VSD
- Significant turnover on site needs to have a very simple VSDS to maintain and troubleshoot

Opex issues

70

Cost of spare parts expensive

 Lessons learned of one project are not reflected or communicated to others projects within contractors/manufacturers organisations.

Software and firmware management

- Lack of proper management of software versions where VSD vendor does not know the versions installed inside the VSD
- Software not properly validated by the VSD vendor before commissioning
- Ride through capability issues with regards to voltage dips
- Factory modifications made without internal validation
 - Next tuto: ICBM (integrated based monitoring for VSD) A new development that need to be launched.

DISCLAIMER and COPYRIGHT RESERVATION

The TOTAL GROUP is defined as TOTAL S.A. and its affiliates and shall include the person and the entity making the presentation.

Disclaimer

This presentation may include forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 with respect to the financial condition, results of operations, business, strategy and plans of TOTAL GROUP that are subject to risk factors and uncertainties caused by changes in, without limitation, technological development and innovation, supply sources, legal framework, market conditions, political or economic events.

TOTAL GROUP does not assume any obligation to update publicly any forward-looking statement, whether as a result of new information, future events or otherwise. Further information on factors which could affect the company's financial results is provided in documents filed by TOTAL GROUP with the French *Autorité des Marchés Financiers* and the US Securities and Exchange Commission.

Accordingly, no reliance may be placed on the accuracy or correctness of any such statements.

<u>Copyright</u>

All rights are reserved and all material in this presentation may not be reproduced without the express written permission of the TOTAL GROUP.