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Abstract – Remote locations, hazardous environments 
and cost of lost time incidents are some of the drivers for 
autonomous facilities. 

We will describe levels of autonomy and key criteria and 
technologies to achieve safe, controlled and maintainable 
operation at each level. Even though manning has a 
significant cost, the real cost reduction comes from 
increased availability and reduced maintenance. In a 
typical process plant, 80% of lost production is preventable, 
and half of this is caused by human error. As much as 30-
40% of net operating cost is maintenance related and this 
could be reduced by 30% or more though prescriptive 
maintenance. 

The artificial intelligence machine learning technologies 
that support autonomy can also be used refine equipment 
models. This allows us to increase energy efficiency, 
prevent hidden losses and reduce both normal and 
accidental emissions. This paper will discuss these 
technologies and the results for a typical oil and gas facility. 
 

Index Terms — Autonomy, Digitalization, Environmental 
Impact, Emissions   

 
I.  INTRODUCTION 

 
The petrochemical industry has been working towards 

autonomous facilities for well over four decades. It is often 
desirable to limit the need for human physical presence 
and intervention in industrial process plants. This new way 
of working may offer significant benefits to operators in 
terms of safety and operational efficiency, and should also 
reduce the cost of new installations by removing the living 
space for workers and support staff. Typical benefits 
drivers for autonomy include: [1] 

 
1. Hazardous conditions often exist with risk of toxic 

or flammable gas exposure or ignition. This 
makes it desirable to limit human presence both 
for regular operations and inspection and 
maintenance. 
 

2. Legacy designs often specify local control rooms 
and/or field control panels that necessitates local 
operators to be present for startup, operational 
changes and other operations. Often this leads to 
excessive flaring during startup and mode 
changes, and lost opportunities in implementing 
efficient control strategies. 
  

3. Human operators have a high error rate for 
routine operations and is ideally suited to handle 
complex and unexpected events. Thus, a high 
degree of autonomy is a goal. 
 

4. Inspection and maintenance operations should 
ideally be converted to condition based predictive 
to reduce the overall in operation failure rate, and 
use remote inspection and intervention solutions 
such as robotics and drones to handle as many 
tasks. 

 
Over a long period, we have seen a gradual 

development from unmanned small facilities such as 
wellhead and satellite platforms 40-50 years ago through 
low and lean manning, remote operations assistance, 
remote operations with various levels of automatic actions 
such as automatic startup and mode changes. Still we have 
only reached what is described as “occasional autonomy” 
where a large number of procedures and tasks may be 
preprogrammed but is initiated by the operator, In facilities 
such as DOW/Aramco SADARA, Shell Ormen Lange and 
Equinor Aasta Hansteen. In the Ormen Lange Nyhamna 
facility this has reduced the required manning significantly, 
but cannot be described as autonomous plants. Even so, 
we have been able to reduce emissions significantly as 
plants may be started up without continuous flaring during 
the startup process. 

 
Condition based and Predictive maintenance are now 

reaching the same maturity level and should result in 30-
40 % reduced human time in the process, due to reduced 
inspection and corrective time- This is significant since 
most in operation failures result in unwanted release and 
burning of hydrocarbons, a reduced emissions rate should 
be achievable. These technologies have now been proven 
in field trials and as field machine learning is built into the 
systems, will be ready for use in upcoming projects. As 
digital twin models of the plants are developed as part of 
the current Digitalization focus of the industry, this 
execution model should significantly reduce the amount of 
effort necessary to implement these schemes. 

 
A third area that should benefit from autonomy is control 

and optimization, and the opportunity to raise process 
performance to new levels. While existing systems are 
optimized and tuned at infrequent intervals, an on line 
digital twin model and description of the process, should 
support continuous improvement throughout the lifecycle. 
It is not uncommon to find improvement potential on the 
order of 3-8% and up to 20% have been found in certain 
cases such as fuel gas use for aeroderivative gas turbine 
driven compressors. 

 
 

II.  FROM LEAN TO REMOTE AND AUTONOMOUS 
 
Autonomous systems’ is used by the industry without a 

common standard that defines what we mean by 



autonomous operations. The Merriam-Webster dictionary 
defines autonomous as ‘undertaken or carried on without 
outside control’. In the process industry we use a more 
accurate description of “a system that without manual 
intervention can change its behavior in response to 
unanticipated events”. This means the word unanticipated 
is the crucial differentiator. [2] The differentiator is that the 
system will be able to modify its behavior, without the need 
for preprogrammed responses.  

 
Most control systems can make changes to the 

operation of a process in the occurrence of a pre-defined 
series of events. Even though the complex algorithms that 
make these decisions will have numerous inputs, the data 
is highly structured and the actions are pre-programmed. 
This type of response is automatic action, such as 
automatic startup, shutdown and mode changes. Such 
systems will pass control to an operator in emergency 
situations that cannot be handled automatically. 

 
A. Levels of autonomy 

 
There are several industry definitions of autonomy 

levels, but as yet no accepted international standard, For 
this paper we use our own company definition that our 
corporate research staff developed based on the 
automotive sector: [3] 

TABLE I 
Levels of Autonomy 

Level Definition of Autonomy level 
5 

Autonomous 
Full autonomous operation occurs in all 
situations. No user interaction is required, and 
humans may be completely absent. Today, this 
is aspirational, and would for instance allow a 
shuttle tanker to mate with an unmanned FPSO 
to perform fully autonomous offloading 

4 
Adaptive 

The system is in full control in certain situations 
and learns from its past actions to be able to 
better predict and resolve issues by itself. An 
example for such a situation could be 
unattended night shift operation, when no 
major changes to the process are expected, 
with remote supervisory role 

3 
Limited 

The automated systems can take control in 
certain situations, referred to as limited 
autonomy. In this mode operators are required 
to confirm the proposed solutions or act as a 
fall back.   Example would be “one button 
startup” procedures with remote operator alert 
in exceptions. 

2 
Occasional 

System moves into occasional autonomy in 
certain situations. In such situations the 
automation system takes control when and as 
requested by a human operator, but only for a 
limited period of time. People are still heavily 
involved, monitoring the state of operations and 
specifying the targets for limited control 
situations. 

1 
Assisted 

These systems provide operational assistance 
by decision support or remote assistance. 
Examples include software collaborative 
solutions that react to detection of instabilities 
and failures and may also inform a remote 
operations center for additional assistance 

0 
Manual 

No autonomy, operator is in complete control, 
but extensive low-level automation may still be 
in place at this level 

 
B. The road to unmanned and autonomous operation 

 
We here want to explore how these mechanisms can 

affect system stability, and process performance and as a 
result reduce emissions, both those from normal 
operations, and from exceptional events. As part of 
autonomy, we must ensure that the underlying system is 
safe, controllable and can be inspected and maintained, 
factors which will also contribute to stable and efficient 
operations. 

 
• As a basis, operation has to be safe: Safe by 

design and safe in operations. The basis for process safety 
lies in the IEC standards for safety systems IEC 16508 and 
IEC 16511. For the design, Failure mode, effects, and 
criticality analysis (FMECA) and Hazardous Operations 
study (HAZOP) must pay particular attention that all 
potential safety threats and failures can be detected and 
handled without physical presence. For operation, safety 
barrier management must ensure that the barriers built in 
are maintained. Process safety management uses 
predictive analytics and diagnostics to reveal latent and 
developing problems to track the safe operating state. This 
is also important to prevent accidental emissions e.g. due 
to blowdown events, as well as massive spills due to 
catastrophic events. 

 
• Process operation and operational efficiency is 

the next step. We must ensure that the facility be operated 
without a physical presence? This means that all 
information necessary for automatic and autonomous 
control is available and that all necessary control actions 
can be performed by the system. When this information is 
available and represented in high fidelity model of the plant 
(digital twin), we also have a good foundation to check, 
tune and optimize the facility in a continuous improvement 
process. We now also have the tools to determine and 
implement best strategies for automatic control such as 
state-based controls for startup, change and shutdown, in 
a way that minimizes e.g. flaring emissions. Autonomous 
process operation would include such items as handling of 
consumables and reset of safety devices. 

 
• Inspection and maintenance will have specific 

targets such as the frequency of major maintenance 
campaigns, e.g. once a year, and the frequency of minor 
service visits. This both has consequences for the design 
of the system, such as redundancy schemes and MTTF 
considerations, and for the way the system handles 
inspection and maintenance remotely. A major contribution 
to plant uptime comes from elimination of unplanned 
shutdown resulting from equipment malfunction or failure. 
We also need to track the many inefficiencies that can 
result from equipment wear and tear, such as scaling, 
abrasion and stiction that will affect process and equipment 
performance and reduce energy efficiency, generally 
resulting in increased specific emissions. This requires a 
good understanding of the wear and failure mechanisms 
and for autonomous facilities requires a change from 
periodic inspection to facility-wide condition monitoring and 
predictive analytics, as opposed to only tracking critical 
equipment as the latter is insufficient in processes with so 
many interdependencies. 

 
• And, finally there are actions that cannot be 

handled with measurements and automatic actions but 
require some form of physical interaction with the plant. 
Remote and inaccessible facilities have demonstrated how 
these can be reduced to a minimum but will have to be 
identified and handled. Over the last 15 years many 



solutions have been verified in pilot projects and are now 
reaching TRL 6 level. This will eventually be part of the 
unmanned and autonomous operation, where the system 
can dispatch a drone for visual clarification or instruct a 
robot to perform some intervention such as mechanically 
testing a valve, scraper handling, gas detection or physical 
shift detection (such as ground load displacement) 

 
• We also need a revised regulatory framework that 

can issue license to operate on the desired autonomy level. 
Today most petroleum industry legislation lack handling of 
levels beyond level 3. 

 
These criteria are summarized in the following table 
 

TABLE II 
Criteria for unmanned and autonomous facilities 
Criteria Requirement 

SAFETY Can we maintain Safety: Standards, 
FMECA, HAZOP, IEC 61508, IEC 
61511 

OPERABILITY Can the facility be operated and 
optimized without a physical presence? 

MAINTAINABILITY Can the facility be inspected and 
maintained with a limited number of 
service visits? 

INTERVENTION Solutions for actions that cannot be 
handled with measurements and 
automatic actions needing physical 
interacton. 

REGULATORY Regulatory framework for autonomy 
 
 

C. Enabling technologies 
 
1) Intelligent Projects and the Digital Twin As a basis, 

digital engineering and Digital Twin type technology should 
be used to model the overall system and implement the 
control schemes [4]. This ensures that we have good 
overview of the process and collect data that can later be 
used for Process Optimization, Condition Based Predictive 
maintenance and Artificial Intelligence decision making. 
The aim of this is not only to reduce manning in normal 
operations, but also to ensure that the process is running 
in an optimal way, and to reduce the overall number of 
incidents requiring (remote) human intervention. 

 
2) Automated procedures, one button and state-based 

control. To reduce the load on the central process model, 
it is generally recommended to close have some level of 
edge processing where normal functions are handled by 
control logic in the local controller. This also gives the 
possibility to preprogram automatic controls with 
responses to common tasks and events that could be 
handled without complex model-based systems. 

 
This would be in the form of sequences or state-based 

controls that allow startup sequences, mode changes, 
responses to hazardous events, workover procedures etc. 
to be built into the logic (based on e.g.  ISA SP 95 
specifications). Based on this, the central model can 
gradually develop autonomous capability to perform all 
regular operations. 

 
One example where these technologies were employed 

was the Aasta Hansteen project by Equinor [5]. Part of the 
challenge was to make the first gas start-up process as 
quick and efficient as possible and eliminate flaring during 

startup. For this, the challenge was to reduce a sequence 
of over 1000 manual interventions to as few as possible. 
The outcome is a series of buttons that are as simple as 
starting a car, referred to as “one button startup”. One 
important experience we could draw on  in this work was 
the recently completed Sadara complex where Dow / 
Aramco used state based control to achieve similar results. 

 
During this process, the start-up steps were defined and 

we identified obstacles that needed to be improved. The 
digital twin simulator environment allowed us to do a virtual 
start-up of the plant, and identify numerous improvements 
for starting up and operating the plant in the process. In this 
way we managed to reduce a complex set of manual 
interventions to just 20 and also accomplish the “no flare” 
target. 

 
The company recorded 57 specific improvements that 

were verified and implemented, resulting in about 40 saved 
days in the commissioning phase of the project, and a 
corresponding reduction in trouble shooting and 
corrections of circa 2,700 man-hours. 

 
The next step is to establish a continuous improvement 

process though AI (Artificial Intelligence) Machine Learning 
technology to analyze and respond to abnormal events or 
detect hazardous process conditions and respond to them.  

 
Some key facts [6] [7]: 

• 80% of production losses can be avoided, half of 
which can be attributed to the wrong control decisions 
[5] by human operators. 

• Human error has been the second most frequent 
cause for the 100 largest plant accidents globally over 
the last 30+ years. 

• 14.5 billion dollars have been lost as a result of these 
accidents referenced above 

• Roughly 3-5% of lost capacity in process equipment is 
caused by loss control in abnormal situations, which 
means a typical plant savings could be € 2.7 million 
annually 

• Elimination of abnormal situations in petrochemical 
plants could increase profits by 5% 

 
3) Predictive Maintenance For most oil and gas assets, 

the detailed maintenance planning for new assets is started 
after the design and instrumentation level have been set. 
This usually leads to a maintenance plan that does not take 
into account the technological development which is 
already field proven in other industries. We need to include 
the richness of information from smart devices and 
instrumentation in maintenance concepts and used during 
design of the asset and also change work processes to 
reduce the frequency of manned interventions to a 
minimum. 

   
The most common practice in the industry is to apply 

condition monitoring to critical machinery. Each individual 
equipment has its own condition monitoring system which 
assesses the health of the equipment independently from 
any connected plant components. However, oil and gas 
facilities are complex and highly coupled systems. A 
problem occurring in one part of the plant can often 
propagate to other components, and a holistic approach to 
towards predictive and proactive maintenance is needed. 
Analytics to support improved maintenance planning can 
now be performed on component, system, plant or fleet 



levels using big data analytics and deep machine learning, 
where large amounts of data are processed to extract 
subtle, previously hidden, information. In combination with 
Digital Twin system modeling, the logic to support this can 
be extracted from the overall engineering model. 

 
4) Artificial Intelligence and Machine Learning A fully 

autonomous system operating at Level 5 should be able to 
handle unforeseen situations and perform high-level 
problem solving without human intervention. Autonomous 
systems may require lower level automated functions in 
order to be effective: E.g., a robot manipulator system can 
learn how to pick up an object that it has not encountered 
before by making use of automated functions such as 
vision-based object detection and sensor-based collision 
avoidance. The robot can apply methods for robot learning 
[8]  to learn how to safely grasp and pick up the previously 
unknown object.  

 

 
 
Fig. 1 Capabilities of a Level 5 Autonomous System 

An autonomous system needs all or most of the following 
capabilities (Fig 1) [1]: 

 
• Situation awareness: "Knowing and understanding 

what is going on" [9] 
• Reasoning: Generate conclusions from available 

knowledge 
• Planning: Construct a sequence of actions to 

achieve a goal 
• Decision making: Select a course of action among 

several alternative scenarios 
• Learning: Improvement through practice, 

experience, or by teaching 
• Actuation: The ability to physically interact with its 

environment 
• Human-machine interfaces: How the autonomous 

systems interact with humans [10] 
 
III.  IMPROVING ENERG EFFICIENCY AND 

REDUCED EMISSIONS 
 
Many of the areas listed above, supporting reduced 

emissions using normal process operation and exceptional 
events could be performed during normal manual 
operation of the systems. We often see that optimal 
operation needs continuous follow up as they tend to fall 
out of tune or optimal control within days and weeks. This 
is particularly true for controls dealing with multi-phase 
flows, such as well control. 

 
Even if a manual continuous improvement program can 

be established, an automatic and autonomous system 
would likely maintain an up to date dynamic model of the 
plant, which is ideally suited to automatically adjusted 
process optimization. 

 
We van the summarize the emissions reduction potential 

of an autonomous facility as follows: 
 
 Emissions during safety action 
One of the most important contributors to emissions from 
an operating facility is safety shutdown actions and the 
following restart procedure. Often this means that large 
quantities of pressurized hydrocarbons in the process 
must be vented to flaring systems, as systems are 
depressurized, purged and started up. 
 
The remedy is of course to reduce the number of 
process upsets that are the cause of these events, and 
this is both a design issue (safe and reliable by design) 
and a safety management task. 
 
This is managed by a process safety barrier 
management system as illustrated by the figure below. 
 

 
 

Figure 2 Process safety management 

Here the objective is to monitor that all safety related 
equipment is operating with the required barriers intact, 
early detection of potential shutdown situations and 
operator support functionality. 
 
As shown earlier, 80% of process shutdowns are 
preventable, and half of them are caused by operator 
error, so autonomous systems with good safety analytics 
should be able to eliminate a majority of these. 
 
It is not uncommon that such shutdowns can lose as 
much as 10 full production days per year, or about 3% 
for complex processing facilities, such as LNG plants, 
and about half that for average production facilities. 

 
 Emissions during catastrophic events 
 
Catastrophic events that cause fires, oil and gas spills, 
or loss of toxic substances have caused some of the 
largest singular environmental impacts in the industry. 
 
These events often result from loss of overview of the 
facility combined with fail to operate of critical equipment. 
Solutions such as the process safety management as 
discussed with fig. 2 above coupled with a barrier 
management system are invaluable in preventing these 
incidents. Humans excel at solving complex problems 
with limited data, but often fail to respond correctly to 
large rapidly changing data sets. Many events that are 
attributed to human failure, are in reality system 
problems that overload the operator with data that 



cannot be efficiently handled by humans. 
 

 Emissions from worn and failing equipment 
 
Condition monitoring of industrial assets, such as motors 

or pumps, can ensure that critical issues are detected 
early, thus avoiding unplanned downtime or damage. Early 
intervention, which reduces the need for corrective 
maintenance, is more cost-effective than simply allowing a 
component to run to failure. [11] 

 
Condition monitoring of such equipment combined with 

predictive analytics to determine the action to take in the 
various detected conditions. In the reference case, A 
neural-network-based, machine-learning model was 
trained to predict the future health status of the asset (an 
electrically driven pump). 

 
Figure 3 Scenarios for predictive maintenance 

Here, we illustrate three scenarios: 
 
Scenario 1 The asset is operating normally with no 

damage predicted, the current and predicted statuses are 
“Keep running.” No unnecessary time-based maintenance 
need be undertaken. 

 
Scenario 2 The asset is currently exhibiting evidence of 

damage but not imminent failure. The current-status field 
advises to keep operating the asset and the predicted-
status fields for the weeks ahead would show “Needs 
attention” and recommend an action (review the asset 
sensor data in a detailed fashion and to take appropriate 
action) 

  
Scenario 3 The asset is currently exhibiting evidence of 

significant damage, not severe enough that it needs to be 
stopped, but enough that its condition should be monitored 
closely. The diagnostic algorithms indicate any initiated 
damage. 

 
Scenario 4 The asset is currently exhibiting symptoms of 

considerable damage and could reach a significant 
damage level in two weeks or later. Since there is no 
devastating damage in the current status, it advises the 
user to “Keep running” and the prediction based on past 
historical data and current data would suggest the status 
field for the two-week prediction as “Needs attention.” 

 
Such systems should allow us to monitor borh for 

equipment efficiency and falire. 
 
Efficiency issues might for example be scaling in pumps 

or heat exchangers which would turn up as deviations from 
the known good equipment performance envelope. 

 
 Emissions from Process Inefficiency 
Process performance capability is an important area for 
gaining value and reducing emissions. Examples from 

20 years of improving upstream operations at more than 
40 sites give us the following indicators of the potential: 
 
• Increase normal production 3-10% 
• Reduce unplanned shutdowns ~20%  
• 50% faster well ramp-up 
• Reduced start-up operator load by 3600 HMI 

interactions at Aasta Hansteen 
• Removed flaring during start-up for Aasta Hansteen 
• Reduce compression cost by 20% 
• Days and weeks’ worth of earlier start-up 
 
The principle behind this is often relatively simple, 
although the solution itself may be complex: Reduce 
stability, use improved operating margin to shift setpoint, 
as illustrated in the following figure: 
 

 
Fig. 4 Basic process optimization 

As an example, the following figure illustrates how 
process optimization reduced the fuel gas use of a gas 
turbine driving a natural gas compressor by around 20% 
 

 
Figure 5 Fuel gas consumption reduction 

However, as mentioned above such systems may fall out 
of optimal tuning within days to weeks, and on level 3 and 
above an autonomous system would provide Automatic 
Production Optimization analytics. 

 
 Emissions from Support Infrastructure 
Supply Vessels, Helitransport etc. 
 
While these emissions are not directly affected by our 

above technologies we would still expect a significant 
reduction due to reduced manning, reduced maintenance 
and reduced intervention needs. Therefore it still makes 
sense to include these in the overall emissions reductions 
resulting from increased Autonomy. 

 
 
 



IV.  CONCLUSIONS 
 

The gained efficiency and loss prevention could range 
from 3-6% for typical well and process equipment, up to 
20% in special cases. We know that the oil and gas 
industry on the average 12% of the well stream is 
consumed  by the production transportation and 
processing facilities before the product can be sold, and 
based on observed figures, it is likely that more than a third 
of this can be eliminated with Automatic Production 
Optimization and Process Safety management analytics. 

 
While part of this reduction could also be realized in a 

system operated by humans alone, we see that the 
continuous optimization that could be realized with in 
combination with a higher level autonomous solutions such 
as Digital Twin, Process Models, Machine Learning and 
Artificial Intelligence are likely to maintain and improve the 
reductions. 
 

Higher levels of autonomy will require a detailed 
understanding of the tasks that will be automated when 
increasing autonomy from one level to the next. This 
includes economical impact (life of field), and the 
operational and safety challenges related to automating the 
task and removing the human from that loop. This will be 
based both on experience and competence .Often this can 
be realized by drawing on how similar challenges have 
been solved in other industries and applications, and who 
was involved (competency), how it was developed (POC 
Pilot – Test – Operation) and the technology deployed 
(algorithms, infrastructure and software). 

 
 NOMENCLATURE 

 
FMECA Failure mode, effects, and criticality analysis 
HAZOP Hazardous Operations study 
MTTF Mean Time To Fail 
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