

18<sup>th</sup> PCIC Europe Annual Electrical and Automation Knowledge Sharing Event www.pcic-europe.com



# EUR22\_35 How Medium Voltage Cables Fail – Fundamentals to Ensure Long Cable Life

Rene Hummel, IMCORP Europe

Mike Wallace, Duke Energy

Ben Lanz, IMCORP

## Video of Partial Discharge in Silicon



2

### Cable Failure in Laboratory – Cross Section

Cable Cross-section Wafer After Legacy Destructive Cable Test Courtesy of NEETRAC

# PD Tracking on Cable Insulation



## Cable Failure



Courtesy of General Cable



## Cable Failure in a Joint



## Theory of Partial Discharges in Cables





## **Insulation PD on Accessory**





## Cut in Cable Insulation – with signs of water tree and PD





Less than 'turn on' voltage 'Turn on' exceeded Significant voltage surge Switching surge with proper protection

Switching surge with insufficient protection

## Installation in the Field



## **10 Root Causes for Cable Failure**



## Cable Failure – due to installation error

![](_page_12_Picture_1.jpeg)

![](_page_12_Picture_2.jpeg)

## Installation Error on Semicon cutback

![](_page_13_Picture_1.jpeg)

![](_page_13_Picture_2.jpeg)

## Cable Damage caused by Installation Error

![](_page_14_Picture_1.jpeg)

#### **PCIC EUROPE**

# PD Tracking caused by Installation Error

![](_page_15_Picture_1.jpeg)

![](_page_15_Picture_2.jpeg)

## Installation Error > 2 years old

![](_page_16_Picture_1.jpeg)

## Installation Error > 2 years old

Substandard Joint Inner Part

Inner Part from

**Failed Joint** 

#### Substandard Joint Outer Part

## Installation Error on Cable End Termination

![](_page_18_Picture_1.jpeg)

# **Reasons for Cables to fail**

![](_page_19_Figure_1.jpeg)

# Cable & Accessory International Standards

|                      | Factory QC Standard      | Test<br>Frequency | Test<br>Sensitivity | Threshold<br>(for 50/60 Hz) |
|----------------------|--------------------------|-------------------|---------------------|-----------------------------|
| Terminations         | IEC 60502-4              | 50/60 Hz          | ≤ 10 pC             | U ≤ 1.73 Uo                 |
|                      | IEEE 48                  | 50/60 Hz          | ≤ 5 pC              | U ≤ 1.5 Uo                  |
| Joints               | IEC 60502-4              | 50/60 Hz          | ≤ 10 pC             | U ≤ 1.73 Uo                 |
|                      | IEEE 404                 | 50/60 Hz          | ≤ 5 pC              | U ≤ 1.5 Uo                  |
| Separable Connectors | IEC 60502-4              | 50/60 Hz          | ≤ 10 pC             | U ≤ 1.73 Uo                 |
|                      | IEEE 404                 | 50/60 Hz          | ≤ 3 pC              | U ≤ 1.3 Uo                  |
| Medium Voltage       | IEC 60502-2              | 50/60 Hz          | ≤ 10 pC             | U ≤ 1.73 Uo                 |
| Cables               | ANSIICEA S-97/94-682/649 | 50/60 Hz          | ≤ 5 pC              | U ≤ 4.0 Uo*                 |
| High Voltage Cables  | IEC 60840-4              | 50/60 Hz          | ≤ 10 pC             | U ≤ 1.5 Uo**                |
| EHV Cables           | ANSIICEA S-108-720       | 50/60 Hz          | ≤ 5 pC              | U ≤ 2.0 Uo                  |

# **Testing Cables**

![](_page_21_Figure_1.jpeg)

#### Test Van with Equipment

Cable under test

#### **PCIC EUROPE**

## Performance by Vintage ( > 52.000 km) - aged Utility Subset

![](_page_22_Figure_1.jpeg)

#### 23

#### PCIC EUROPE

# Workmanship Issue on Open Air End Termination

## Workmanship Issue on Open Air End Termination

![](_page_24_Picture_1.jpeg)

## Workmanship Issue on Open Air End Termination

![](_page_25_Picture_1.jpeg)

#### **PCIC EUROPE**

## Workmanship Issue on Separable Connector

![](_page_26_Picture_1.jpeg)

![](_page_27_Picture_0.jpeg)

# Workmanship Issue on Joint

![](_page_28_Picture_1.jpeg)

![](_page_28_Picture_2.jpeg)

## Workmanship Issue on Joint

![](_page_29_Picture_1.jpeg)

Figure 6: Insulation cutback out of specification. See attached instruction Step D1 "Check" distance that requires the joint assembly to be rebuilt if the dimension is longer than 165mm. Note: This issue was typical for all 5 dissected joints.

#### **PCIC EUROPE**

## Conclusions

- >99% of issues are caused by improper Workmanship
- Partial Discharges (PD) is the dominant failure mode of MV cables
- Issues with Partial Discharges can be indentified with proper testing
- IEC / IEEE need to be followed for testing (sensitivity and voltage)
- Identified and located issues must be adressed
- Proper workmanship can be achieved through training and QA/QC