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Abstract - Electric motors, as the main power source in 
electrification, play a vital role in global industrial 
production. The digitalized predictive maintenance system 
utilizes health data generated from condition monitoring 
tools gathered from motor operations to predict failure 
trend and probability. Compared to reactive maintenance, 
the predictive maintenance supports scheduled 
maintenance plan before the failure occurs. It is critical to 
prevent significant impacts of accidental failures in 
operating motors by adapting new condition-based 
monitoring and health management digital system.  
 
The article introduces digital transformation of condition 
monitoring and health management system for industrial 
motors. It identifies the common failures of electric motors, 
followed by proposing new ways for analyzing motor 
operating characteristics, health data and systems to 
quantify failure trend and development. Subsequently the 
authors establish asset lifecycle management 
methodologies for maintaining the motors' reliable 
operations and minimizing the impact to production.  

 
Index Terms — Digitalization, Digital twin, Electric motor, 

Condition-based monitoring, Prognostics, Health 
management, Lifecycle management.  

 
I.  INTRODUCTION 

 
As one of the main power sources that drives various 

industrial equipment, the electric motor's reliable operation 
is crucial to the safety and reliability of process-based 
large-scale industrial production, such as petroleum, 
chemical, oil and gas, mining and power generation. The 
failure of motors' key components may cause equipment 
malfunction or even damage, resulting in interruption and 
chain reaction of failure in the entire production process, 
resulting in huge economic losses [1-4]. 

With the continuous promotion and application of 
advanced technologies such as IIoT, big data, and 
industrial artificial intelligence [5-6], monitoring the 
operational status of fix assets often requires many 
monitoring points, high sampling frequency and long data 
collection period. The amount of data to be processed by 
the motor health management system has shown an 
exponential growth. Big data such as hundreds of Terabits 
or even Petabits is not uncommon. Mechanical big data 
has become an important resource for revealing the 
evolutionary process and nature of mechanical failures [7-
8]. The massive data on the industrial internet platform has 
important value. The scale of the data volume and the 

ability to explain and utilize will also become critical for 
motor health management [9-12]. 

Therefore, a large amount of motor operating status data 
is obtained through online and offline methods. Predictive 
analysis is established by mining the information 
embedded in the health data. It assists technicians to 
recognize, manage and solve various problems from a 
predictive perspective. It is particularly important to deduce 
and predict the trend and rate of fault development to 
achieve targeted maintenance [13-14]. Therefore it 
reduces efficiency and economic losses caused by 
unplanned incidents of production lines or units. 

The practices of digital transformation of industrial motor 
condition monitoring and health management system are 
introduced. Common faults of electric motors are firstly 
presented. New methods for analyzing motor operating 
characteristics, health data, and healthy systems are then 
presented to quantify fault trends and developments. 
Subsequently, an equipment lifecycle management 
approach was established to ensure reliable operation of 
motors and minimize the impact on production. Following 
a case study in a real scenario, the conclusions are drawn 
at the end of the paper. 

 
II.  MOTOR HEALTH MANAGEMENT 

 
A.  General Concept  

 
The Prognostics and Health Management (PHM) system 

utilizes important operational parameters of the equipment 
collected through sensors and control systems. By 
monitoring and analyzing the evolution of such real-time 
data over a period of time, the system deduces motor 
failure development process and trend based on certain 
defined rules and algorithms. The system enables 
predictive maintenance to reduce the probability of 
catastrophic failures. Specifically, the system is able to: (1) 
trigger early warnings for the failure of equipment of 
concern to avoid unexpected accidents; (2) provide 
operators the necessary information for predictive 
maintenance; (3) reduce maintenance frequency and 
costs; (4) present historical data that can provide feedback 
for operation improvement.  

The necessary conditions for monitored items in PHM 
are as follows:  

1.  Common equipment failures which affect the safe 
operation of equipment, and the failure rate is high. 

2.  High failure detection operability. Generally, the 
detection can be done by removing parts such as 
the cover of junction box when the equipment is 
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either running or shut down, without compromising 
health & safety guidelines. 

3.  The detected results can be quantified to evaluate 
the fault level.  

Other items affecting equipment health can be covered 
during regular routine maintenance or overhaul. 

 
B.  Determination of Motor Health Characteristic 

Parameters 
 

The working condition of the motor is normally under 
harsh environment. For example,  

1.  The motor deployed in the petrochemical industry is 
in a relatively confined environment with insufficient 
air flow for dissipating the generated heat. The 
ambient temperature is often around 40 °C. Or it is 
often installed in open air area and exposed to direct 
sunlight.  

2.  Some motors are installed in open ground close to 
coastal region. The climate near sea is humid. The 
salty air is corrosive, endangering the durability of 
the motor.  

3.  The motor is used for belt conveyor lines, hoists, or 
elevators etc., suffering frequent start-up/stop and 
large load fluctuation.  

4.  The motor is exposed to heavy particulate air 
pollution. 

5.  The motor uses variable frequency power with 
insufficient harmonic control. 

 
The common faults of motors are excessive vibration, 

high bearing operating temperature, abnormal sound, low 
winding insulation resistance, high winding temperature, 
uneven three-phase current, rust or loose parts, 
overheating of terminals, etc. Apart from equipment 
manufacturing and installation related reasons, the faults 
can be related to previously mentioned harsh conditions 
and improper maintenance. These faults most likely lead to 
bearing and winding failures. In addition, burnt leads or 
cracked components also occur frequently. Statistics show 
that bearing damage and winding burndown account for 
80% of the total damage, while both bearings and windings 
have fatigue and aging phenomena. Therefore, bearings 
and windings constitute the main components of interest in 
reflecting the health of the motors. The power quality (e.g., 
harmonics) and maintenance behavior also have impact on 
motor operation, which can be used as reference factors 
for motor health status and life cycle prediction. 

The fault diagnosis mainly focuses on the characteristic 
parameters of components. The first component is the 
bearing. (1) The vibration acceleration envelope value (gE) 
can comprehensively reflect the degree of bearing defects. 
It can be used as a predictive parameter for the health 
status and development trend of rolling bearings; (2) The 
bearing vibration spectrum can be used to further analyze 
the fault location and fault degree of the bearing, and can 
be used as a detailed parameter for life cycle prediction in 
the middle and late stages of the incurred fault; (3) The 
parameter of the bearing operating environment affects the 
speed of failure development. The bearing operating 
temperature can be used as a reference parameter for life 
cycle prediction; (4) The bearing vibration speed affects the 
fault development speed and can be used as a reference 
parameter for life cycle prediction; (5) The abnormal sound 
from running bearing is used to assist in judging the degree 
of fault. 

The second component is the winding. The winding is 
composed of coils, inter-turn insulation, ground (core) 
insulation, lead wires, terminals, etc. The inherent 
parameters are: (1) Through three-phase and historical 
data comparison, the three-phase DC resistance R is used 
for judging the reliability of the electrical connection. It’s 
also regarded as a reference parameter for inter-turn faults. 
(2) Three-phase inductance L, impedance Z, I/F, and 
phase angle φ are used for comprehensive judgment of 
turn-to-turn faults. (3) Comparing to the historical data (or 
factory data), the ground capacitance C is used to 
determine the main parameters of ground insulation aging. 
(4) The insulation resistance R, absorption ratio (or 
polarization index) can be used to judge the moisture and 
pollution of the winding. (5) The current and voltage 
spectrum can be used to comprehensively analyze the 
dynamic and static unevenness of the stator and rotor air 
gap, loose windings, rotor bar defects, electromagnetically 
induced vibration, heat generation, etc. 

The third component is the squirrel cage rotor. (1) Three-
phase inductance curve is the main parameters for judging 
the defects of squirrel-cage rotor such as broken bars and 
thin bars. (2) Combined with the three-phase inductance 
curve, the current spectrum is main parameters for 
comprehensively judging the of squirrel-cage rotor defects. 
(3) The vibration spectrum is used as reference parameters 
for rotor failure to determine the rotor defects such as 
unbalance, looseness, and oil film oscillation of sliding 
bearings. 

The natural frequency measurement of other parts such 
as shafts, casings, components, etc., and the 
measurement of power harmonics can also be used as a 
reference for fault diagnosis. 

 
C.  Operational Health Stages and Determination of 

Evaluation Indexes  

 
 

Fig. 1 Stages of motor faults 
 

Operational Health Stage: Regardless of the aging of 
the motor winding or the fatigue of the bearings, it is a 
gradual process (sudden failures caused by abnormality 
are not in the scope of this article). General speaking, after 
a long period of good operation, the signs of failure are 
gradually formed and slowly expanded. It enters the early 
stage of failure. As the degree of failure gradually expands, 
the speed of development gradually accelerates, entering 
the middle stage of failure, and then entering the late stage, 
as shown in Fig. 1. The stage division mainly considers two 
factors, one is the severity of the fault, refer to relevant 
standards or experience. The second is the length of time 
left to deal with the fault. In the late stage of the fault, 
although it can continue to operate for a period of time, it 
should be dealt with immediately to avoid great losses until 
failure occurred. 
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Evaluation index: According to relevant standards and 
experience, a reference index can be determined 
according to specific projects. For each piece of 
equipment, it should be combined with the operating 
environment (temperature, vibration, installation method, 
etc.), working conditions (load rate, operation mode, etc.) 
and similar products. The operating experience should be 
properly adjusted, i.e., the evaluation indicators should be 
continuously revised and improved the accuracy in the 
process of equipment health management. The suggested 
reference indicators (but not limited to) are listed in Table I. 

 
TABLE I 

Operational Health Evaluation Index 

 
D.  Health Data Management  

 
The equipment health management is mainly health 

data management, including data acquisition, current 
inspection data, historical data of previous inspections, and 
inspection time intervals. Unless intermediate repairs affect 
data changes, such as replacing winding coils and 
bearings, but even so, since the operating environment of 
the equipment has not changed, the change law of 
historical data is still of reference value for subsequent 
health analysis. For this reason, it is necessary to establish 
a set of data files that can manage, compare and analyze 
historical data for equipment health management. 

The health management data file should have the 
following functions: (1) It can regularly record the basic data 
of the equipment, and these data are related to the 
comparative analysis and spectrum analysis; (2) It can 
record the location, name, etc. of the equipment, so that 
the equipment is unique; (3) According to the different 
detection time, record each detection data, combined with 
the fault degree standard, automatically judge and mark 
the fault state according to the color, and can be 
distinguished according to the detection time; (4) It can 
compare and analyze the historical data, and can also 
compare and analyze the detection data of the same 
equipment (that is, it can compare and analyze both 
vertically and horizontally); (5) It is possible to store the 
source files of each detection (such as spectrum, curves, 
etc.), to compare and analyze the source file data when 
necessary. 
 

III.  CONDITION MONITORING SMART SERVICES 
SYSTEM ARCHITECTURE  

 
The platform architecture of Condition Monitoring Smart 

Services is shown in Fig. 2. It comprises six layers: Access 
Layer, Communication Layer, Platform Layer, Algorithm 
Layer, Application Layer and UI (User Interface) layer. The 
system is capable to provide online monitoring for all 
rotating machines such as motors, compressors, fans and 
pumps, etc. It is based on standard communication 
protocols, sharing speed, vibration and temperature data 
along with asset locations through the IoT Edge hardware.  

 

 
 

Fig. 2 Condition monitoring smart services platform 
architecture 

 
Built on the cloud infrastructure and using Spring Cloud 

microservices, the platform consists of four kay functional 
centers: IoT Hub, Big Data Center, Algorithm Center and 
Digital Twin. The algorithm center can provide fault 
diagnosis, health assessment and lifespan prediction using 
various AI models. 

A range of applications are implemented including alarm 
management, AI diagnosis, health index, asset profile, 3D 
modeling, maintenance forecast, expert assistance, 
message center, spare parts and more. The user interface 
covers, large screen, PC and mobile APP. 
 

 
Fig. 3 Condition monitoring smart services software 

architecture 
 

The Condition monitoring smart services software 
architecture based on PHM concept is illustrated in Fig. 3. 
The PHM is constructed based on the microservice 
architecture, including configuration center, gateway, 
business service, log collection, scheduled tasks, service 
monitoring, etc., The core data processing is supported by 
the business capabilities of each middle platform. The 
modules of the software architecture are: 

1.  The Configuration and Registry Center use Nacos 
to configure and register individual services. 
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DC Resistance Unevenness/% ≤2 >2~5 >5~10 >10 

Inductive Resistance 
Roughness/% 

≤10 >10~20 >20~30 >30 

Reactance Roughness/% ≤10 >10~20 >20~30 >30 

Three-phase Phase Angle 
Unevenness (Low Voltage) 

≤1.3 >1.3~2 >2~5 >5 

Three-phase Phase Angle 
Unevenness (High Voltage) 

≤1.3 >1.3~3.5 >3.5~8 >8 

I/F(Low Voltage） ≤1.3 >1.3~2 >2~5 >5 

I/F(High Voltage） ≤1.3 >1.3~3.5 >3.5~8 >8 

Winding Pollution Index (Low 
Voltage） 

≤1 >1~2 >2~3 >3 

Winding Pollution Index (High 
Voltage） 

≤1.3 >1.3~2.5 >2.5~3.5 >3.5 
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2.  The gateway adopts Spring Cloud Gateway for 
load-balancing and various services routing 

3.  Microservices business include device service, 
work order service, user service, authentication 
service, maintenance service, message service and 
alarm service. It can run multiple instances. The 
communication service between services chooses 
the Dubbo protocol. 

4.  The scheduled tasks (xx-ljob) are used to execute 
health reports, inspection reports, device statistics, 
etc. 

5.  The message components include SMS, push APP, 
and MQ. 

6.  The ElasticSearch search engine is for 
documentation, expert collaborating chat storage, 
and device-related searches. 

7.  MySQL, Redis and PostgreSQL are general 
business data store. 

8.  The construction of middle platform in the software 
architecture comprise of 3 function types. IoT middle 
platform includes receiving sensor data for reporting 
and forwarding to business systems. The big data 
middle platform consists of IoT data, algorithm data, 
health computing and other related data capabilities 
and providing data services. The algorithm middle 
platform contains vibration data spectrum analysis, 
intelligent trend alarm calculation to provide 
diagnostic analysis capabilities. 

 
IV.  FUNCTION AND ALGORITHM 

 
Based on fast, reliable IoT, big data technology and 

industrial artificial intelligence, it’s achievable to build a 
complete predictive maintenance with real-time health 
assessment, intelligent status warning, accurate fault 
diagnosis and accurate fault prediction as the core of the 
motor intelligent predictive maintenance and health 
management system. The functions of the system are to 
realize the equipment management concept of motor life 
cycle health management and predictive maintenance. 

 
A.  Intelligent Status Warning 
 

Based on various information such as life cycle stage of 
the motor, the accuracy of motor management and 
maintenance, etc., a hierarchical early warning system is 
built. It provides absolute quantity index early warning and 
relative quantity index early warning to solve the monitoring 
of dominant problems. The big data analysis and industrial 
artificial intelligence early warning are able to realize the 
monitoring of potential hidden problems such as early weak 
faults. Each early warning method can be accessed and 
configured separately. Through the dynamic combination 
of each alarm method, the missing alarm and false alarm 
can be greatly reduced, and the number of repeated alarm 
push notifications can be dramatically reduced to meet the 
satisfaction of users for precise and intelligent early 
warning. 

 
B.  Accurate Fault Diagnosis 
 

The motor intelligent predictive maintenance and health 
management system provides professional vibration 
analysis spectrum tools based on the idea of data service 
integration, including statistical analysis of real-time 
monitoring of vibration signals, waveform diagram, 
spectrum diagram, envelope spectrum, refinement 

spectrum and more than 10 kinds of analysis spectrum. For 
example, Fig. 4 shows the vibration signal analysis. 
Combined with the motor diagnosis knowledge base and 
related equipment information, it can realize the diagnosis 
and analysis of the health status of the motors. 
 

  
 

Fig. 4 Vibration signal analysis 
 

C.  Intelligent Motor Fault Diagnosis Driven by Knowledge 
Map 

 
The diagnosable components can be identified from the 

motor operational status. The health condition indicators 
are extracted from the vibration, temperature and other 
signals. The fault symptoms are predicted from the feature 
trend and vibration frequency domain. Through information 
extraction, cloud storage and cloud computing with the 
information visual mapping, it can construct a knowledge 
map of equipment faults for visual display of knowledge of 
equipment fault analysis mechanism. It can build a logical 
reasoning engine for fault identification based on the 
knowledge map to achieve intelligent diagnosis of common 
motor faults (Fig. 5.). 

 

 
Fig. 5 Motor diagnosis knowledge graph 

 
D.  Motor Life Prediction Based on Exponential 

Degradation Model 
 

Rolling bearings and three-phase windings, as two 
important components of the motor, are the focus of motor 
life prediction. The gradual fatigue of the rolling bearing 
determines the fatigue life of the bearing. The parameters 
that can be detected and quantified are the acceleration 
envelope value and the maximum acceleration envelope 
value of a single component in the vibration spectrum. The 
gradual aging of winding insulation materials, affected by 
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heat, electricity, chemistry, machinery, etc., determines the 
aging life of winding insulation. The parameters that can be 
detected and quantified are ground capacitance C, three-
phase inductance, three-phase impedance, three-phase 
I/F. The local items such as discharge and DC leakage 
have their own emphasis and need to be comprehensively 
evaluated. In addition, the gradual growth faults, such as 
wear and looseness of rotating parts, cracking of squirrel 
cage rotor bars, etc., can be measured and evaluated 
through vibration signals (e.g., vibration speed, 
acceleration) and electrical signals (e.g., squirrel cage rotor 
status indicators). 

Regardless of the fatigue of the bearing or the aging of 
the winding insulation material, they all follow the gradual 
and slow decay from the intact stage to the early stage of 
failure, and the rapid decay from the middle stage to the 
late stage of the fault. Combined with the basic law of 
component or material fatigue and aging, in order to 
simplify the analysis, it is relatively simple and easy to 
roughly describe the later life law according to the exponent 
function [15]. The simplified mathematical model is as 
follows:  

 
𝑌 = 𝐴! + 𝑋"   (1) 

 
Where 

𝑌 aging evaluation index parameters; 
 𝐴! the initial value of the evaluation parameter 

or the previous detection value (when new); 
 𝑋 state parameters (select the target 

parameters that have the greatest impact on 
the current equipment operation or specific 
target parameters in the health parameters), 
which are related to both the operational 
condition and the original state. The 
development speed and so on are all 
changing. Each physical examination 
determines a current X value, combined 
with the previous X value to judge its change 
law, and then assigns X to the current 
forecast calculation. Therefore, the closer to 
the late period from the mid-term, the more 
meaningful the forecast is; 

 t time node (The bearing data can be 
collected by hours, and the winding data can 
be counted by months). 

 
V.  CASE STUDY 

 
The Fig. 6 shows the horizontal vibration velocity trend 

of an environmental protection fan motor operated in a 
petrochemical company. 

 

 
 

Fig. 6 A fan motor vibration velocity trend chart 
 

It can be seen from the trend chart that the previous 
operation data of the fan is relatively stable. The effective 
value of the vibration speed in the horizontal direction is 2.0 
mm/s at 11 am on January 31, 2023. After 175 hours of 

operation on February 7, 2023, the effective value of the 
vibration velocity is observed to reach 4.85 mm/s and is 
gradually increasing. The warning alarm is triggered. 
According to this growing trend, the exponential simplified 
model is used to fit the vibration trend of the motor, and it 
is obtained by using Levenberg-Marquardt method [16] 

 
𝑌 = 1.05 + 1.007733"  (2) 

 
Referring to the ISO10816-3 standard [17], we set the 

high alarm threshold of 7.1 mm/s as the target value for 
maintenance. According to Equation (2) and using a safety 
factor of 0.8, the predicted time to reach the 7.1 mm/s 
threshold is 105 hours. It can be seen from the trend chart 
that after the similar amount of hours of operation, the 
actual vibration speed reaches 6.6 mm/s, which is close to 
the 7.1 mm/s threshold. The case illustrates the 
effectiveness of the motor life prediction based on the 
exponential degradation model in equation (1). 

 
VI.  CONCLUSIONS 

 
1)  The motor health management is the data source 

of predictive maintenance. The management of historical 
motor health data is the key to motor health management. 
The real-time online monitoring or regular health checks on 
equipment is essential for the safe operation of the 
equipment, along with timely collection of the first-hand 
information on the health status of the equipment.  

2)  Based on digital technologies such as IIoT, big 
data, and artificial intelligence, the motor health 
management system obtains production monitoring data 
and operating data through intelligent means of deploying 
advanced sensors and edge computing units. It can 
intelligently perceive and warn the real-time running status 
of the motor panoramically. At the same time it realizes the 
intelligent diagnosis and identification of common faults of 
the motor, accurately locate the fault, analyze the root 
cause of the fault, and provide reference for customers to 
make maintenance decisions. 

3)  By collecting the motor operation data, the 
motor’s PHM system can monitor trends of fault 
propagation in deterioration and predict motor failures in 
advance. It can predict equipment operating life on a rolling 
basis, transforming traditional temporary and unplanned 
maintenance into planned maintenance. As a result of 
implementing PHM, the operators improve efficiency by 
reducing unplanned downtime. They are able to change 
conventional motor management system into an intelligent 
predictive maintenance solution. 

 
NOMENCLATURE 

 
IIoT Industrial Internet of Things  
gE Envelope value 
R Three-phase DC resistance 
L Three-phase inductance 
Z Three-phase impedance 
I/F Frequency doubling current change ratio 
φ  Phase angles 
C Capacitance to ground 
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