
DATA-DRIVEN INSIGHTS FOR INDUCTION MOTOR CONDITION 
MONITORING 

Copyright Material PCIC Europe Paper 
No. PCIC Europe EUR24_04 

Andrea Santarpia 
SBM Offshore 

11, Av. Albert II, 98000 
Monaco 

Andrea.Santarpia@sbmoffshore.com  

Abstract – Effective condition monitoring of electric 
motors plays a pivotal role in ensuring the reliability and 
performance of various industrial processes. 
This paper presents a comprehensive methodology for 
real-time monitoring of internal thermal and loading 
behavior within electric induction motors, employing 
pattern recognition & matching techniques. The approach 
outlined leverages data-driven insights to assess the 
health and performance of electric motors in a proactive 
manner. 
The paper defines an approach utilizing conventional 
sensors, relay data, and advanced pattern recognition & 
matching algorithms for predictive maintenance, 
minimizing downtime and optimizing operational 
efficiency. 

Index Terms — Induction Motors, Digitalization, IED, 
Machine Learning, Data Analytics, Algorithm 
Development, Abnormal Behaviors, Predictive 
Maintenance 

I. INTRODUCTION

Traditional Electric Motors Management relies on 
Preventive Maintenance (PM), primarily guided by 
manufacturer’s recommendations, international 
standards, and operators’ experience. PM routines 
encompass not only maintenance tasks like cleaning, 
parts replacement, and oil refill, but also a set of electrical 
and mechanical tests to evaluate the motor's condition. 

Intelligent Electronic Devices (IED) monitor various 
parameters such as currents, voltage, power, winding and 
bearing temperatures, vibrations, ensuring equipment 
safety. While these real-time data are vital for protecting 
the motor, they primarily identify specific failures or 
anomalies without structured analytics for predictive 
failure detection or improved machine operations. 

Trending and analyzing electrical parameters from IED, 
along with mechanical and process data from the 
Equipment Unit Control Panel (UCP) and/or Distributed 
Control System (DCS), provide a powerful tool for 
operators in their day-to-day work.

In the realm of industrial operations, effective 
monitoring of electric motors is crucial. Ensuring their 
optimal health not only minimizes downtime but also 
aligns with industry goals of reducing emissions through 
electrification. 

While smart sensors offer undeniable benefits [1], the 
methodology presented for real-time monitoring to identify 
abnormal behaviors and areas for operational 
improvement solely depends on IED and DCS/UCP data. 
This approach, depending on device and automation 

network characteristics and availability, minimizes costs 
and simplifies system complexities. 

Employing advanced pattern recognition & matching 
techniques as anomaly detection algorithms, the method 
uses real time data to proactively assess electric motor 
health and performance. By identifying abnormal 
behaviors, it enables predictive maintenance, reducing 
unplanned downtime and optimizing operational 
efficiency. 

II. SYSTEM ARCHITECTURE FOR DATA 

ACQUISITION 

Several architectures are accessible for data 
acquisition, accomplished through an automation serial 
network connecting the mentioned devices/systems to a 
dedicated server functioning as a data hub [2].  

IEDs can be connected in switchboard architectures in 
STAR configuration, Ring, Multiple-Ring, Redundant 
(HSR or PRP), etc. as briefly illustrated in Fig. 1. An 
exemplar of the overall architecture, including IED, DCS 
and UCP is displayed in Fig. 2. 

Fig. 1 Typical network topologies 

While this paper introduces the foundational concepts 
of system architectures for data acquisition, it refrains 
from delving into detailed specifications or configurations, 
leaving further exploration to be pursued as indicated in 
reference [2]. 

III. MOTOR CONDITION MONITORING – MOTOR 

MODELS 

A. Thermal Model

The Thermal Model facilitates the detection of abnormal 
thermal conditions by analyzing data related to motor 
currents (ILs), winding temperatures (WDG_Ts), and 
calculated thermal load (THML). Motor currents and 



thermal load are acquired from IED, while winding 
temperatures can be sourced from either the IED (as 
displayed in Fig.3) or the UCP/DCS. 

THML acts as the supervised and primary parameter 
for overload protection (ANSI Code 49) [3]. The IED 
computes THML by considering true RMS and negative-
sequence currents, along with heating and cooling time 
constants. The heating up of the motor is determined by 
the square value of the load current. However, in case of 
unbalanced phase currents, the negative-sequence 
current also causes additional heating. Protection based 
on both current components helps avoid abnormal motor 
heating. The thermal load is influenced by various 
operational situations and phase current levels [4]. 

The multidimensional scatter plot (Fig. 4) represents the 
data and aids in identifying the healthy zone and several 
failure modes, such as: 

 
1) Motor High/Very High Temperature: Triggered 

when a winding temperature exceeds defined 
alarm limits. This condition may be associated 
with an overload state, insufficient/failed motor 
cooling systems or internal overheating/hot 
spots. Operators are alerted to prevent motor 
failure, with machine shutdown recommended 
based on motor loading. 
 

 
Fig. 2 Example of overall architecture philosophy 

 
2) Motor High Thermal Load: Activated when the 

thermal load surpasses defined alarm limits. 
This failure mode may indicate motor overload 
conditions, prompting operators to prevent motor 
trips. 
 

3) Motor Abnormal Thermal Behavior: Activated 
when, given a thermal load value, one of the 
winding temperatures exceeds the recognized 
healthy range. This condition could relate to 
cooling issues or internal overheating/hot spots, 
sometimes even high ambient temperature. 
Operators are alerted to investigate the causes 
of deviation. 
 

4) Abnormal Instrument Readings: Evident when 
one of the winding temperatures falls below the 
recognized healthy range. Additionally, this 
condition arises when the temperature difference 
between phases exceeds 30%. If this condition 
is contemporary with the abnormal thermal 
behavior area, both modes are triggered. 

 

 
Fig. 3 Motor starter typical scheme 

 
The healthy range or “normal behavior” is determined 

based on the observations made during the training 
phase. The model learns to recognize these normal 
patterns within the collected data.  

 
The developed learning algorithm involves the 

integration of multiple prediction and regression models 
throughout its training period. This period is algorithmically 
initiated once deviations in the motor's operational points 
converge toward the optimal operating point within 
predetermined thresholds. Subsequently, the delineation 
of the healthy range is centered around the anticipated 
area, expanded by additional margins as determined by 
Subject Matter Experts (SMEs). Drawing from an analysis 
of over 120 monitored HV motors, the standard training 
duration spans approximately 2000 to 2200 running 
hours, inclusive of 3 inrushes minimum, while maintaining 
individual temperature deviations below 5% under specific 
thermal loads. 

Algorithm's functionality includes the filtration of 
irregular signals, such as spikes, through a 



comprehensive analysis of signal densities. Illustrated in 
Fig. 5 to 7 are density plots correlating the three phases 
winding temperatures with the thermal loading, within the 
specified period displayed in Fig. 4. 
 

 
Fig. 4 Winding Temperatures vs THML scatter plot 

 
Besides, the algorithm is equipped to assess 

unsynchronized data. When input signal sampling occurs 
within a predefined range (e.g., 20 seconds in the current 
model), the algorithm synchronizes THML values through 
linear interpolation. Any data points exceeding the 
specified sampling period are disregarded. However, it 
should be noted that this aspect poses a limitation during 
motor inrush, rendering the presented model not always 
reliable for analyses during such periods. 

 
B. Loading Model 

 
While the thermal model is universally applicable to all 

induction motors, irrespective of the driven load, the 
proposed loading model specifically caters to pumps and 
compressors with limitations. 

The Loading Model detects possible abnormal loading 
conditions by analyzing data related to motor absorbed 
power (P), suction and delivery pressures (Pr-s and Pr-d), 
fluid flow and inlet temperature (FF and FT). Motor 
absorbed power is directly sourced from IED, while other 
parameters are acquired from the UCP or DCS, as 
depicted in Fig. 8 [5]. Loading is calculated by the 
algorithm as the product of fluid flow and differential 
pressure (dP = Pr-d – Pr-s). At specific intervals of inlet 
Fluid Temperature (FT), motor absorbed power and 
calculated loading are presented on multidimensional 
scatter plots (Fig. 9), aiding in identifying the healthy zone 
and potential areas of anomaly, such as: 

 
1) Motor Excessive Loading: Activated when power 

exceeds the healthy range for a given loading 
value. This condition may be linked to 
mechanical issues, decreased efficiency, 
instrument failures, or specific machinery issues 
(e.g., surge, internal recycling, change in gas 
composition for compressors [7] and cavitation 
for pumps [8]). 
 

2) Motor Under-Loading: Evident when power falls 
below the recognized healthy range. This 
condition may relate to abnormal instrument 
readings or failures. 

 
The determination of the healthy range or 'normal 

behavior' is based on observations during the training 
phase. The model learns to recognize normal patterns 
within collected data. 

The developed learning algorithm integrates multiple 
prediction and regression models throughout its training 
period. This training period, algorithmically initiated by 
dividing samples into data-pools based on inlet flow 
temperature, is defined by Gas Compression System 
SMEs. 

Data groups are processed as deviations in the motor's 
operational points converge toward the optimal operating 
point. The healthy range is centered around the 
anticipated area, expanded by additional margins as 
determined by Subject Matter Experts (Electrical and Gas 
System SMEs). Drawing from an analysis of 18 monitored 
gas compressors and water pumps drives by HV motors, 
the standard training duration spans approximately 2000 
running hours. 

The algorithm automatically excludes data during 
machine starting and in recirculation mode. It includes the 
filtration of irregular signals, such as spikes, through a 
comprehensive analysis of signal densities. Fig. 10 
illustrates density plots correlating absorbed power and 
loading (P vs dP*FF) within the specified period indicated 
in Fig. 9. 

 

 
Fig. 5 Winding 1 Temperatures vs THML density plot 

 

 
Fig. 6 Winding 2 Temperatures vs THML density plot 

 
Additionally, the algorithm assesses unsynchronized 

data. When input signal sampling occurs within a 



predefined range (e.g., 1 minute in the current model), the 
algorithm synchronizes Loading values through linear 
interpolation, disregarding any data points exceeding the 
specified sampling period. 

 

 
Fig. 7 Winding 3 Temperatures vs THML density plot 

 

 
Fig. 8 Simplified PID for compressor1  

 

 
Fig. 9 Motor absorbed power vs Loading at fixed FT 

scatter plot 
 

IV.  SELECTED DEMONSTRATIVE CASES 
 
This section elucidates chosen illustrative instances 

that exemplify the pragmatic application of thermal and 

 
1 Legend: FT Flow Transmitter, PT Pressure Transmitter, TT Temperature 
Transmitter, FCV Flow Control Valve, SC Speed Controller 

loading models for induction motors driving main gas 
compressors and water injection pumps in operational 
Floating Production Storage and Offloading (FPSO) units. 
These cases afford valuable insights into the efficacy and 
practical utility of the implemented models, thereby 
elucidating their influence on operational performance and 
reliability. 

 

 
Fig. 10 Motor absorbed power vs Loading at fixed FT 

density plot 
 

A. Thermal Abnormal Behavior 
 

For Motor Very High Temperature and Motor High 
Thermal Load (set at 98%) conditions, the notification is 
instantaneous upon occurrence. Conversely, for other 
instances such as abnormal thermal behavior and 
abnormal instrument readings, the notification is 
dispatched via email either upon the condition's cessation 
or one hour after activation. 

Fig. 11 depicts the primary instance of abnormal 
thermal behavior for a main gas compressor, illustrated in 
a multidimensional scatter plot filtered for the specific 
condition. A remote investigation revealed a temporary 
cooler malfunction, distinguished by elevated cooling 
medium temperatures, consequently hindering 
operational efficiency. 

 

 
 

Fig. 11 Case-1 Abnormal Thermal Behavior – 
multidimensional scatter plot 

 



Another distinct case, related to a different gas 
compressor motor, illustrated in Fig. 12, displays an 
abnormal thermal condition triggered by momentary 
overload. Despite the acceptable thermal loading level, 
the time-plot analysis depicted in Fig. 13 indicates a 
slower increase of thermal load compared to 
temperatures, suggesting an incorrect heating time 
constant in the Intelligent Electronic Device (IED). 
Corrective action involved fine-tuning the protection 49 
settings. 

 

 
Fig. 12 Case-2 Abnormal Thermal Behavior – 

multidimensional scatter plot 
 

 
Fig. 13 Case-2 Abnormal Thermal Behavior – time plot 

 
 

B. Motor Excessive Loading 
 
While the UCP diligently monitors mechanical 

parameters (vibrations, temperatures, and process 
parameters), providing alarms and trip signals as needed, 
the proposed model proves instrumental in evaluating 
package efficiency. 

Figure 14 illustrates a case of increased loading in a 
water injection pump motor through a multidimensional 
scatter plot. Trends reveal a gradual load increase over a 
one-year period, attributed to the reduced efficiency of the 
pump. 

 

 
Fig. 14 Motor excessive loading due to reduced 

compressor efficiency – multidimensional scatter plot 
 
Distinct colors and associated lines represent different 

trimesters of the year (gray for T1, blue for T2, and orange 
for T3). It is discernible that there is an approximate 
1.97% increase in absorbed power over the last year. 
This data has been utilized as supporting information for 
the pump performance monitoring tool. 

 
 

V.  METHOD EVALUATION AND FUTURE 

IMPROVEMENTS 
 
The deployed method has unequivocally proven its 

efficacy in real-time identification and resolution of 
operational anomalies. This success is particularly evident 
in its ability to facilitate proactive maintenance by 
autonomously generating Work Orders based on real-
time data, thereby optimizing operational efficiency and 
prolonging the lifespan of critical components. 

 
Additionally, the method plays a fundamental role in 

incident troubleshooting, promptly identifying issues like 
abnormal thermal behavior and motor excessive loading.  

However, it is essential to acknowledge certain 
limitations. The thermal model, while generally robust, 
exhibits reduced reliability in capturing short/fast 
transients, necessitating ongoing refinement for improved 
responsiveness and accuracy. 

 
Similarly, the present mechanical model is confined to 

efficiency assessment, prompting the need for expansion 
to involve a larger spectrum of mechanical and process 
data. To address this, ongoing efforts involve integrating 
the mechanical model into the machinery model owned 
by the mechanical department. This integration aims to 
leverage additional data, including vibrations and 
temperatures, to provide a more comprehensive 
evaluation of motor health. 

 
In the realm of thermal modeling, ongoing 

enhancements are actively being pursued. The algorithm 
is currently undergoing refinement with the inclusion of 
motor cooling and ambient temperature parameters into 
its framework. Simultaneously, the introduction of new 
dimensions for pattern recognition and the integration of 



machine learning algorithms are in progress, offering the 
potential for more nuanced insights into motor behavior. 
These advancements aim to streamline remote 
investigation tasks and enhance the system's 
responsiveness, ensuring a faster and more effective 
response to operational needs. A noteworthy initiative 
involves the creation of a unique induction motor 
intelligent integrity and surveillance tool. This tool extends 
beyond electrical models, incorporating innovative 
analytics like disturbance recorders analysis (Comtrade 
DFT – Discrete Fourier Transform – analysis) to refine 
diagnostic capabilities and enhance predictive accuracy. 

 
These ongoing developments are aimed at solidifying 

the method's position as an advanced, adaptive system 
adept at navigating the complexities of operational 
technology. Through continual refinement and expansion, 
the method is poised to persist in its role as a cutting-edge 
solution for the dynamic challenges inherent in the 
operational landscape, offering a holistic approach to 
motor health and performance monitoring. 

 
VI.  CONCLUSION 

The methodology presented in this paper offers a 
comprehensive framework for real-time monitoring of 
induction motor health and performance. By leveraging 
data-driven insights and advanced pattern recognition 
techniques, the approach enables proactive maintenance, 
minimizes downtime, and optimizes operational efficiency. 
The thermal and loading models discussed demonstrate 
the efficacy of the system in identifying abnormal 
behaviors and potential areas of improvement. Through 
selected demonstrative cases, the practical utility of the 
implemented models in operational scenarios, such as 
Floating Production Storage and Offloading (FPSO) units, 
has been highlighted. 

While the deployed method has proven effective in real-
time anomaly identification and resolution, certain 
limitations exist, particularly regarding the responsiveness 
and accuracy of capturing short/fast transients in the 
thermal model. Ongoing efforts are directed towards 
refining the algorithms and expanding the scope of 
mechanical modeling to incorporate a wider range of 
mechanical and process data. Future improvements aim 
to enhance the system's responsiveness and diagnostic 
capabilities through the integration of machine learning 
algorithms and innovative analytics. 
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