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Abstract - Unplanned downtime of critical refinery assets, 
such as motors, variable frequency drives and rotating 
equipment, can lead to major financial losses, operational 
disruptions and environmental harm. This paper introduces 
a practical framework to improve asset reliability and 
longevity through predictive analytics, condition-based 
maintenance and expert oversight. Focusing on 
operational efficiency and lifecycle management, the 
framework identifies early signs of wear, prevents 
equipment failures and supports data-driven decisions on 
maintenance, retrofits and replacements. The framework 
aligns with regulatory standards like the Ecodesign 
Sustainable Products Regulation and EU Energy Efficiency 
Directive, emphasizing longer equipment life, better 
resource use and reductions in Scope 1 and 2 emissions. 
By combining digital monitoring, edge-computed analytics 
and subject matter expertise, the framework keeps aging 
assets dependable and efficient – reducing lifecycle costs, 
enhancing reliability and supporting sustainability goals 
across refinery operations. 

 
Index Terms – Predictive Maintenance, Condition 

Monitoring, Rotating Equipment, Asset Integrity, ESG 
Compliance, Sustainable Maintenance, Reliability 
Engineering, Digital Product Passport. 

 
Note: The “framework” referenced throughout this paper 

describes a governed predictive maintenance strategy 
that uses a closed-loop, analytics-driven maintenance 
framework. It is validated using cross-industry scenario 
modeling rather than synthetic simulation. Its degradation 
patterns and response workflows are based on real-world 
observations across diverse industrial sectors, ensuring 
practical relevance and feasibility for field implementation.  

 
 

I.  INTRODUCTION 
 

Rotating electrical assets and the motors and the 
variable frequency drives (VFDs) that control them, power 
essential refinery processes like crude distillation, catalytic 
cracking, hydrogen production and hydrocarbon transport. 
Asset failures can lead to severe disruptions, costing over 
USD 124,000 per incident and resulting in harmful 
emissions and flaring events from emergency shutdowns 
and restarts, as validated by recent industry research 
[1][2][12]. 

Despite their importance, many maintenance strategies 
are still reactive or based on fixed intervals. Time-Based 
Maintenance (TBM) schedules, based on fixed service 
intervals, often ignores actual asset condition, leading to 
premature or unnecessary servicing or missed failures. 
Condition-Based Maintenance (CBM) typically reacts to 

alarms without predicting future issues. Even Predictive 
Maintenance (PDM) systems that detect early anomalies 
often fail to connect diagnostic insights to maintenance 
actions or environmental goals. 

Meanwhile, regulatory and financial expectations are 
shifting from qualitative maintenance records to machine-
readable Environmental, Social and Governance (ESG) 
disclosures. Emerging EU regulations, including the 
Ecodesign for Sustainable Products Regulation (ESPR) 
with Digital Product Passport (DPP), and the EU Energy 
Efficiency Directive, require asset operators to trace and 
disclose durability, repairability, lifecycle energy 
performance and emissions [3][4][5]. Failure to comply 
risks financial penalties, regulatory restrictions, 
reputational damage and reduced access to green 
investment. 

In this new environment, rotating equipment 
management must evolve beyond just a maintenance task; 
it must support risk management, financial mitigation, 
regulatory compliance and sustainability. 

To meet these needs, this paper introduces a governed 
predictive maintenance strategy (referred throughout 
this paper as the framework). The framework is a case-
informed, six-layer predictive maintenance strategy that 
redefines asset lifecycle governance. It links early 
degradation detection, Subject Matter Expert (SME) 
validation, Computerized Maintenance Management 
System (CMMS) workflows and ESG-compliant 
maintenance actions.  

Unlike conventional predictive systems focused primarily 
on fault detection, the framework integrates sensor data, 
hybrid analytics, structured SME validation, secondary 
diagnostics via lifetime expectation assessment and air 
gap inspections, CMMS task generation and ESG-aligned 
lifecycle tracking. 

The framework improves equipment reliability and 
extends asset life, while cutting energy waste and 
maintenance costs. It closes the loop from early 
degradation detection to ESG-attributable task execution, 
supporting refinery goals for efficiency, transparency, 
resilience and carbon neutrality. 

The strategy’s architecture is aligned with: 
- ISO 13374-1 condition monitoring data structuring 

standards  
- IEC 60300-3-11 dependability management 

practices  
- ESPR Annex II  
- EU Energy Efficiency Directive [3][4][6][7]  
While the framework is not yet deployed in refineries, it 

is ready for pilot implementation. Its core components, 
such as stressor-based sensing, hybrid analytics, SME 
validation and ESG-aligned task governance, are 
individually proven in many industries. The framework 



combines these proven components into a single system 
designed for refinery needs while also being adaptable to 
other industries. 

This paper explains the engineering challenges that led 
to the development of a governed predictive 
maintenance strategy (the framework). It describes how 
its closed-loop lifecycle management works and explores 
its potential impact on sustainability reporting, asset 
resilience, and regulatory compliance. It shows the links 
between stressor-based diagnostics to controlled 
execution, ESG goals and refinery resilience. 

 
II.  ROTATING EQUIPMENT DEGRADATION AND 

MAINTENANCE FAILURE 
 

A.  TEAM Stressor Landscape Driving Asset Degradation 
 
Rotating electrical assets in refineries face complex 

operational and environmental stressors that degrade their 
mechanical, electrical and thermal performance over time. 
While individual degradation mechanisms are well-
understood, their combined effects, especially under 
refinery-specific conditions, can significantly accelerate 
equipment failure. 

The key degradation stressors are Thermal, Electrical, 
Ambient and Mechanical (TEAM).  

Thermal stress results from repeated heating and 
cooling, leading to material expansion, bearing lubricant 
fatigue and component wear – especially in VFDs where it 
affects cooling fans, electrolytic capacitors, printed circuit 
board assemblies (PCBAs) and power semiconductor 
modules. Cooling fan degradation reduces thermal 
stability, capacitor aging accelerates DC ripple distortion, 
and PCBA and semiconductor degradation compromise 
control integrity and power conversion efficiency.  

Electrical stress includes harmonic distortion, transient 
voltage spikes, load imbalance and partial discharge, all of 
which degrade motor winding insulation systems and 
power electronic components [1].  

Ambient stress comes from refinery contaminants like 
sulfur, hydrocarbons and dust, which impair cooling and 
corrode materials.  

Mechanical stress can be caused by electromagnetic 
vibration and mechanical vibration induced by unbalanced 
rotating masses, shaft misalignment, and foundation 
softness resulting in fatigue, excites structural resonances 
and risk of premature failure [1][2]. 

As shown in Fig. 1, environmental factors like ambient 
temperature and how the VFD is used, along with the 
thermal cycling experienced by insulated-gate bipolar 
transistor (IGBT) modules, significantly affect how quickly 
VFDs degrade and how urgently they need maintenance. 

 

 

Fig 1. Environmental and cyclic factors influencing 
degradation and maintenance strategy in refinery VFD 
systems. 

The overriding effect of these TEAM stressors erodes 
asset health, even for equipment designed to severe-duty 
specifications, underscoring the need for predictive and 
governed lifecycle management approaches. 

 
B.  Failure Modes and Degradation Mechanisms  

 
TEAM stressors lead to well-documented failure modes 

in motors, generators and VFDs: 
Thermal stress accelerates stator insulation aging and 

bearing lubricant degradation. In VFDs, cooling fans exhibit 
accelerated bearing fatigue at higher inlet air temperatures; 
electrolytic capacitors suffer capacitance loss and ESR 
increases, impairing voltage smoothing; PCBAs 
experience dielectric breakdown and control instability; and 
IGBT modules degrade under cyclic thermal loading, 
leading to junction instability and switching losses. 

Electrical stress initiates partial discharge activity, 
surface currents, inter-turn shorts, ground faults and 
degradation of power electronics, including capacitor 
drying and IGBT gate instability [1].  

Ambient stress causes cooling system inefficiency, 
pollution-induced copper corrosion, decline in insulation 
resistance, and insulation contamination.  

Mechanical stress leads to bearing spalling, rotor 
vibration, shaft deformation, external forces acting on 
bearings and structural casing distortion. Electromagnetic 
forces also induce vibration and contribute to mechanical 
stress-related fatigue. 

Whether occurring independently or interactively, these 
mechanisms define the main reasons for failure of refinery 
motors, generators and VFDs. Targeting these TEAM-
aligned degradation pathways through structured sensing 
strategies and predictive diagnostics is fundamental to 
establishing resilient, durable and ESG-compliant asset 
management frameworks. 

 
C.  Product Variability and Failure Risk 

 
Beyond external stresses, internal product variability, 

from manufacturing inconsistencies, material defects or 
commissioning issues, can cause premature failures, even 
under nominal operating conditions [1][2]. Failures fall into 
two categories:  

Overstress: Instantaneous failure from a stress event, 
such as severe voltage transients or mechanical shocks 
that exceed an asset’s designed strength.  

Wear-out: Gradual degradation from prolonged 
exposure to sub-critical operating stresses.  

In VFDs, variability in capacitor ESR degradation can 
contribute to early-stage failures, while IGBT substrate and 
chip solders are susceptible to thermal fatigue under cyclic 
loading, leading to progressive module degradation. 
Effective predictive maintenance systems must detect fast-
acting overstress events and slow-progressing cumulative 
wear-out mechanisms to optimize maintenance timing and 
cost. 

 
D.  Gaps in Current Predictive Maintenance Models 

 
Despite an advanced understanding of TEAM stressors 

and their degradation pathways, most refinery 
maintenance strategies remain reactive or only partially 
predictive.  

 Conditions accelerate asset aging and increase the risk of premature failure.  Conditions slow aging and lower premature failure risk.

 Conditions may accelerate asset aging and increase the risk of premature failure.  Data unavailable.
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Time-Based Maintenance (TBM): Use fixed service 
intervals, ignoring real-time stressor exposure and 
degradation dynamics, resulting in premature maintenance 
or undetected failure progression.  

Condition-Based Maintenance (CBM): Responds to 
threshold-based alerts but lacks predictive forecasting and 
broader lifecycle integration. 

Stressor-based models are more dynamic, adjusting 
preventive scheduling based on cumulative operating 
loads, such as internal and external temperature exposure, 
and enables basic Remaining Useful Life (RUL) trend 
estimation.  

In contrast, classical CBM frameworks trigger 
interventions only when a threshold is exceeded and does 
not support RUL forecasting. As standalone methods, both 
TBM and CBM lack any secondary diagnostics and ESG 
lifecycle attribution, limiting their effectiveness for refinery 
ESG disclosure readiness and sustainable finance 
eligibility. 

Fig. 2 shows how stressor-informed maintenance shifts 
from fixed intervals to degradation-driven actions, 
improving alignment with asset condition.  

 
Fig 2. Transition from fixed-interval to stressor-informed 
maintenance logic, illustrating how predictive models shift 
refinery VFD maintenance timing based on real-world 
degradation exposure. 

Even Predictive Maintenance (PDM) systems, though 
more advanced than CBM, often work in isolation, 
detecting anomalies without clear processes, SME 
validation or ESG metric attribution. Alarms set to avoid 
false positives can miss early warning signs, letting 
problems grow into disruptive events. As a result, valuable 
predictive insights are rarely used effectively across 
maintenance, risk or ESG reporting, limiting their overall 
impact. 

 
E.  The Need for Predictive Lifecycle Management 

 
Studies show that in refineries motor and VFD failures 

are predictable weeks or months in advance using TEAM-
based sensing and predictive analytics. Without a 
predictive lifecycle management infrastructure, operators 
face preventable production losses, emergency energy 
expenditures, regulatory non-compliance penalties and 
ESG non-compliance. Addressing this requires a shift from 
isolated anomaly detection to a governed predictive 
lifecycle model that includes: 

Multimodal sensing, compliant with ISO 13374-1 
condition monitoring standards [6], ensuring interoperable, 
traceable data.  

Predictive analytics combining deterministic signal 
analysis with unsupervised learning techniques to detect 
complex, multivariate degradation patterns.  

Structured SME validation through trigger–filter–
review workflows, supported by secondary diagnostics to 
confirm asset health prior to maintenance intervention 
authorization.  

Maintenance execution integrated with CMMS, 
generating machine-readable, ESG-attributable work 
orders aligned with digital product passport (DPP) 
standards [5]. 

Without full-loop integration, spanning early degradation 
detection, SME validation, governed maintenance 
execution and ESG metric attribution, predictive 
maintenance fails to deliver its full strategic potential. 
Operators continue to face escalating operational volatility, 
regulatory scrutiny and financial exposure. 

By embedding stressor monitoring into maintenance 
processes, operators can reduce Scope 1 emissions via 
early intervention, optimize Scope 2 energy use, and meet 
requirements under the Ecodesign Sustainable Products 
Regulation (ESPR) Annex II and EU Energy Efficiency 
Directive. 

Unchecked degradation not only leads to costly outages 
but also results in avoidable Scope 1 emissions from 
emergency flaring and Scope 2 inefficiencies due to 
harmonic distortion, control instability and bearing-related 
energy losses. 

The next section introduces the actual architecture which 
comprises a six-layer predictive lifecycle governance 
framework, engineered to detect TEAM stressors, apply 
predictive analytics, guide SME-driven intervention and 
enable ESG-compliant maintenance execution. 

 
III.  ARCHITECTURE FOR GOVERNED PREDICTIVE 

MAINTENANCE 
 

A.  Layer 1: Multimodal Asset Sensing and Data Capture 
 
The framework begins by capturing high-quality, multi-

domain data from the rotating equipment, motors and 
VFDs using sensors tuned to the expected failure modes 
derived from the TEAM stressor analysis. 

Thermal monitoring: Thermal sensors monitor stator 
windings, bearing housings, power semiconductors, and 
capacitors to detect overheating risks across both motors 
and VFDs. For motors, temperature rise over ambient and 
thermal cycling trends reveal insulation aging, lubricant 
degradation, and bearing fatigue. In VFDs, thermal 
excursions and gradient shifts indicate impaired cooling, 
fan degradation, and semiconductor stress. Deviations 
from thermal design baselines are used to forecast failure 
risk, enabling predictive interventions that preserve thermal 
integrity and extend lifecycle performance. 

Electrical monitoring: Partial discharge sensors, 
(sensitive to electromagnetic emissions between 10 MHz 
to 1500 MHz) monitor insulation degradation in stator 
windings and terminal boxes. Power quality analysers 
(sampling rates exceeding 4 kHz) monitor Total Harmonic 
Distortion (THD), voltage imbalance, excitation drift, IGBT 
degradation and control instability. 

Ambient monitoring: External temperature and 
humidity sensors quantify environmental loading on motors 
and VFDs. Elevated ambient temperatures reduce cooling 
margins and accelerate thermal aging, while high humidity 
increases the risk of condensation, insulation degradation, 
and corrosion. Deviations from environmental baselines 
are trended to assess stress exposure and guide derating 
decisions or preventive maintenance, supporting reliable 
operation under variable refinery conditions. 

Mechanical monitoring: Tri-axial accelerometers, 
sampling at 6.6 kHz, and single-axis accelerometers, with 
a configurable sampling rate of up to 102 kHz, mounted at 
critical bearing and casing locations to track bearing 



issues, shaft misalignment, lost magnetic wedge and rotor 
unbalance. Oil condition sensors detect changes in 
viscosity, metallic particle counts and contamination 
ingress. 

All sensor data is time-synchronized using a cloud-
based reference clock. This allows cross-domain 
correlation during post-acquisition analysis. The data 
structure is formatted to ISO 13374-1 standards to ensure 
consistency and interoperability. 
 
B.  Layer 2: Signal Processing and Feature Extraction 

 
Raw sensor data is processed in two stages, following 

ISO 13374-1 condition monitoring standards [6]. The first 
stage applies bandpass filtering using Hanning-windowed 
Finite Impulse Response (FIR) filters to isolate frequency 
bands linked to known fault signatures. 

For bearing condition monitoring, the Early Shock Pulse 
Detection (ESPD) algorithm [9] analyzes high-frequency 
vibration data. It uses adaptive band splitting and signal 
segmentation to detect weak, periodic impacts from early-
stage bearing defects. Fault indicators are based on 
impulse timing relative to shaft speed and the energy within 
resonance bands. 

Motor shaft speed is estimated via frequency-domain 
interpolation of vibration and magnetometer signals, 
enabling accurate detection of mechanical issues like 
imbalance, misalignment and looseness. 

Feature extraction is performed across three domains: 

• Time domain: Root Mean Square (RMS), peak-
to-peak, crest factor, kurtosis. 

• Frequency domain: Fast Fourier Transform 
(FFT) harmonics, harmonic sidebands, THD. 

• Energy domain: Spectral entropy, signal energy 
density. 

For VFDs, features like THD percentage, odd/even 
harmonic ratios and negative sequence voltages are 
extracted to detect drive degradation and excitation 
instability. The framework also analyses oscillations and 
limit-approaching transients to anticipate dynamic faults 
like overcurrent, overspeed or over-/undervoltage trips. 

All features are normalized against historical healthy 
baselines and enriched with metadata (e.g. motor frame 
size, drive type and duty cycle) to support adaptive 
anomaly detection. 

 
C.  Layer 3: Anomaly Detection and Remaining Useful 

Life Forecasting 
 
The framework extracts features from time, frequency 

and energy domains, then uses predictive modeling to 
detect anomalies and estimate remaining Remaining 
Useful Life (RUL) under actual operating conditions. 

It employs a hybrid analytics pipeline that combines 
unsupervised anomaly detection and RUL forecasting. The 
primary anomaly detection is optimized for high-
dimensional, sparse industrial data, while One-Class 
Support Vector Machines (OCSVMs) [8] are used when 
asset operating profiles are available, allowing precise 
modelling of normal behavior. 

Once the anomaly scores are obtained from the healthy 
training data, an anomaly score threshold 𝜏1 is derived 
using statistical features of the distribution. For selected 
input signals, in addition to anomaly score threshold, 
amplitude threshold 𝜏2 is identified from the training data.  

For a data point to be considered anomalous, the 
following condition must be met 

 

𝑠𝑖𝑛 > 𝜏1 and  𝑋𝑖𝑛 > 𝜏2  (1) 
 
where 𝑠𝑖𝑛 and 𝑋𝑖𝑛 are the anomaly score and amplitude 

of the input data point. 
A rolling window approach filters out transient 

anomalies, triggering alerts only for persistent deviations. 
RUL forecasting is applied to critical assets like VFDs using 
models trained on relevant degradation features including 
power quality indicators and cumulative thermal loading. 
Forecasts include 95% confidence intervals to support risk-
based maintenance planning. While models are validated 
using emulated degradation data, real-world accuracy will 
be confirmed during pilot deployment. 

 
D.  Layer 4: Structured Subject Matter Expert (SME) 

Validation and Diagnostic Governance 
 
While advanced analytics can detect early signs of 

failure, trusted decision-making demands human-in-the-
loop expertise. The framework ensures this through a 
structured review by Subject Matter Experts (SMEs) for 
every predictive event. When an anomaly is detected or a 
RUL threshold is crossed, a diagnostic evidence packet is 
generated containing: 

• Time-series plots of key features, 

• FFT spectral overlays for vibration and THD 
profiles, 

• Statistical deviations and trend indicators. 
SMEs then conduct a three-stage assessment: 

1. Noise filtering: Exclude false positives from 
transient disturbances. 

2. Fault diagnosis: Match patterns with known 
failure signatures (e.g., ESPD-detected bearing 
defects or harmonic imbalance). 

3. Severity and urgency assessment: Prioritize 
actions based on how fast the fault is progressing 
and the criticality of the asset. 

This trigger–filter–review process ensures maintenance 
actions are based in risk and system importance.  

Secondary diagnostics are used only when both data 
and expert judgement point to medium- or high-severity 
degradation issues. Air gap inspection is a non-invasive 
method that checks stator–rotor alignment and radial 
clearance in medium/high-voltage motors to detect rotor 
eccentricity, stator ovality and mechanical instability. 

 
E.  Layer 5: CMMS Integration and Governed 

Maintenance Execution 
 
Once predictive events are validated, they are 

transferred into the CMMS as machine-readable work 
orders through a structured handoff process. Each work 
order includes: 

• Fault taxonomy codes aligned to ISO 14224 
failure mode classifications [7], enabling 
machine-readable traceability and asset-level 
maintenance hierarchy tracking, 

• Recommended actions, such as bearing 
replacement or VFD tuning, 

• Asset-specific Bills of Materials (BOMs) linked 
to predictive diagnostics, 

• Maintenance timing based on RUL forecasts. 



Each event remains traceable from initial anomaly to 
final work order, supporting audit compliance and data 
lineage integrity. 

 
F.  Layer 6: ESG Metric Attribution and Regulatory 

Compliance Readiness 
 
Beyond operational improvements, the framework links 

predictive maintenance to ESG performance and 
compliance. Each intervention is mapped to: 

• Durability gains, measured by increased Mean 
Time Between Failures (MTBF)  

• Scope 1 emissions reduction, by preventing 
mechanical or electrical faults that could lead to 
flaring  

• Scope 2 energy savings, from improved 
drive/motor efficiency and reduced harmonic 
losses  

• Repairability and transparency, formatted for 
digital product passport (DPP) readiness [5][6]. 

The framework maintains a version-controlled ESG 
performance registry that records each event from 
anomaly detection to corrective action, aligned with EU 
Energy Efficiency Directive [4] and ESPR disclosure 
requirements. Data is exportable to EPREL 3.0 formats [5] 
to support sustainable finance reporting. 

The ESG registry data structure and reporting scheme 
are detailed in Appendix A. Thus, the framework elevates 
predictive maintenance from an operational optimization 
tool to a strategic enabler of sustainability, compliance, and 
financial defensibility. 

 
IV.  SCENARIO-INFORMED VALIDATION AND KPI 

OUTCOMES 
 

A.  Case-to-Execution Workflow 
 
The framework’s readiness is validated using illustrated 

degradation scenarios based on real-world motor and VFD 
behavior from process industries. These workflows 
simulate asset behavior using synthetic fault conditions 
and stressor profiles to test the end-to-end maintenance 
process. The framework operates as a closed loop, from 
early anomaly detection through SME validation, governed 
secondary diagnostics and CMMS-driven work order 
execution. SMEs authorize secondary diagnostics only 
when needed, ensuring traceable and risk-aligned actions. 

This scenario-informed method confirms that the 
framework’s workflows are operationally ready, ESG-
compliant, auditable and defensible against risk and 
sustainability benchmarks, prior to full-scale deployment. 

 
B.  Emulated Case Scenarios 

 
1)  High-Voltage Synchronous Motor (Direct-On-

Line Connection) Operating a Centrifugal Compressor: 
The framework was evaluated using a 22 MW, 6.6 kV high-
voltage synchronous motor model driving a reciprocating 
compressor in a refinery-like setting. The model included 
key stressors such as cyclic mechanical loads, pulsation 
forces, excitation system variations and environment 
contaminants. 

The degradation scenario reflects concurrent bearing 
fatigue and excitation voltage instability, mirroring the 
typical mechanical–electrical fault coupling seen in 
centrifugal compressor. 

Key degradation indicators included: 

• 38% increase in vibration crest factor over 
baseline 

• Growth of crankshaft-related harmonics in FFT 
analysis 

• Excitation voltage deviations exceeding ±2% 
thresholds 

• Early ESPD patterns pointing to localized bearing 
fatigue 

Despite background noise and load fluctuations, the 
framework’s analytics reliably detected these combined 
anomalies and predicted RUL with 95% confidence.  

Structured SME validation was performed using 
compiled diagnostic evidence packets, including: 

• Time-series vibration and excitation trend plots 

• FFT overlays illustrating harmonic evolution 

• Excitation voltage deviation tracking 
Diagnostic data such as vibration trends, harmonic 

overlays and excitation deviation plots were reviewed by 
SMEs. Based on this, the following governed CMMS work 
orders were authorized: Time-series vibration and 
excitation trend plots, 

• to confirm accelerated bearing degradation 

• to assess rotor shaft alignment deviations 
Once validated, predictive maintenance actions were 

initiated through CMMS workflows. 
Maintenance Optimization Impact: Early detection, 

backed-up by SME-validated secondary diagnostics, 
enabled a condition-based maintenance strategy aligned 
with ISO 14224 [7] standards: 

• L1 (routine inspection) and L2 (minor 
corrective) tasks were executed early 

• Risk for L3 (major corrective) and L4 (overhaul) 
events was reduced 

• Time-based maintenance (TBM) intervals were 
avoided 

Because degradation was caught early and localized, 
the required L3+ intervention was completed without 
removing the rotor, reducing dismantling complexity, 
minimizing process disruption and shortening downtime 
from weeks to days.  

This proactive approach avoided emergency shutdowns 
(contributing to Scope 1 emissions reduction) and 
improved energy efficiency (contributing to Scope 2 
reductions) by preventing inefficient process cycling. 

Lifecycle Extension and L4 Planning: Secondary 
diagnostics revealed early signs of stator winding thermal 
aging and rotor mechanical stability margin reduction. 
Although no critical winding defects were found, RUL 
analysis flagged medium-term degradation of the winding 
insulation. 

In response, the team scheduled a proactive L4 motor 
reconditioning including stator rewinding and rotor 
refurbishment, during the next major plant maintenance 
outage. This early intervention avoided the risk of 
unplanned failures, prevented emergency shutdowns 
(eliminated Scope 1 emissions) and supported optimized 
resource planning, safer execution and lower maintenance 
costs. It also strengthened the framework’s role as a 
strategic enabler of sustainable, resilient refinery 
operations. 

 
2) High-Voltage Induction Motor with Medium-Voltage 

Drive: The framework was tested on a 3.3-kV, high-voltage 
induction motor paired with a medium-voltage VFD 



operating a fluid catalytic cracking (FCC) air blower. The 
scenario reflects harmonic instability and power quality 
disturbances under partial-load variability.  

Despite operational noise and THD escalation and 
negative sequence voltage drift emerging gradually, 
predictive analytics isolated key degradation trends 
including: 

• Amplified vibration harmonics at 2× and 3× line 
frequency  

• THD drift exceeding 8.1% operational limits 

• Negative sequence voltage growth 

• Slight power factor decline linked to harmonic 
distortion 

To validate the predictions, SMEs reviewed diagnostic 
packets covering THD trends, voltage imbalance and 
vibration harmonics. Corrective actions were authorized 
based on SME-reviewed judgments: 

 
C.  KPI Outcomes and ESG Impact 

 
The framework’s predictive maintenance was evaluated 

through refinery-style emulations, with key operational 
ESG benefits summarized in in Table I. 
 

TABLE I 
KPI OUTCOMES AND ESG IMPACT FOR SCENARIO-

INFORMED REFINERY CASE EMULATIONS 

KPI 

High-Voltage 
Synchronous 
Motor 
(Emulated) 

High-Voltage 
Induction 
Motor 
(Emulated) 

ESG Linkage 

Predicted 
MTBF 
Improvement 

+42% +36% 

ESPR Annex II 
durability 
compliance 
readiness 

Predicted 
Normalized 
Energy 
Efficiency 
Gain 

+0.1% +4.9% 
EU Energy 
Efficiency Directive 

Predicted 
Scope 1 
Emissions 
Avoidance 

~23 tCO₂e - 
ESG Scope 1 
emissions reporting 
readiness 

Predicted 
Scope 2 
Emissions 
Reduction 

~101 tCO₂e/a ~13 tCO₂e/a 
ESG Scope 2 
emissions 
reduction validation 

Repairability 
& and 
Traceability 
Readiness 

DPP-
compliant 
structures 
modeled 

DPP-
compliant 
structures 
modeled 

ESPR Annex II 
reporting validation 

 
Key Performance Indicators (KPI) Derivation Methodology: 
KPIs were derived from case-informed degradation 
modeling and predictive maintenance intervention 
scenarios.  

• MTBF gains were calculated by comparing 
simulated failure rates before and after the 
framework’s interventions 

• Energy savings were derived from reduced 
harmonic losses, VFD optimization and effects of 
minimized mechanical losses 

• Scope 1 emissions avoidance was based on 
preventing unplanned shutdowns and flaring  

• Scope 2 emissions reductions were modeled using 
normalized grid emission factors 

• Details are available in Appendix B. 
 

Case-Specific ESG Contributions: In the High-Voltage 
Synchronous Motor case, ESG benefits stemmed from 
early mechanical fault detection, condition-based L3+ 
interventions without rotor removal, and pre-emptive L4 
reconditioning These actions prevented emergency 
shutdowns (avoiding Scope 1 emissions) and substantially 
improved energy efficiency (Scope 2) by reducing 
mechanical and magnetic losses. 

For the High-Voltage Induction Motor with Medium-
Voltage Drive, the focus was on early identification of 
electrical issues like harmonic instability and voltage 
imbalance. ESG gains here came from Scope 2 efficiency 
improvements enabled by optimized VFD performance, 
without requiring mechanical secondary diagnostics. 

Together, the two cases show the framework’s ability to 
support both mechanical and electrical reliability strategies. 
Mechanical cases used lifetime assessments and air gap 
inspections for in-depth diagnostics, while electrical cases 
relied on SME-driven signal analysis. This flexibility 
supports tailored ESG reporting and reinforces operation 
resilience across diverse asset types. 

 
D.  Summary of Case-Informed Validation 

 
The emulated case studies demonstrated the 

framework’s ability to: 

• Detect complex, multivariate degradation early, 
even under realistic refinery-like noise and 
variability conditions 

• Accurately forecast RUL despite transient 
operational disturbances 

• Use structured SME validation to ensure 
predictive insights are operationally credible  

• Integrate predictive maintenance decisions 
directly into CMMS for risk-prioritized execution 

• Quantify both performance and ESG benefits 
resulting from predictive interventions 

The framework goes beyond flagging faults: it 
incorporates structured asset-specific diagnostics for 
motors. Lifetime assessments provides data-driven 
projections on bearing life and mechanical health using 
vibration trends, ESPD signatures and degradation 
modeling. Air gap inspection physically validates rotor-
stator alignment by measuring air gap deviations and 
identifying early mechanical issues like shaft misalignment, 
rotor bow or stator ovalization. 

These diagnostics are initiated only through SME 
approval and are tracked via governed CMMS work orders, 
ensuring traceable, risk-based and ESG-attributable 
maintenance actions. For VFDs, predictive decisions rely 
on expert validation of electrical anomalies (e,g, THD rise, 
negative sequence voltage drift and transient torque/speed 
behavior), without requiring mechanical inspections. 

This dual-layer validation – analytics plus expert 
oversight – builds trust in RUL forecasts, reduces 
maintenance scheduling uncertainty and strengthens ESG 
compliance by linking maintenance to Scope 1 emissions 
avoidance and Scope 2 energy efficiency improvements. 

These results are based entirely on case-informed 
models and SME-reviewed workflows; field deployment 
and real-world benchmarking are forthcoming and 
expected to further refine KPI accuracy. 

 



V.  STRATEGIC IMPLICATIONS FOR ESG 

ALIGNMENT AND INDUSTRIAL RESILIENCE 
 

A.  Strategic Role of Predictive Lifecycle Governance 
 
Refineries face growing operational, environmental and 

regulatory demands. Traditional maintenance approaches, 
whether time-based or reactive, are no longer sufficient for 
ensuring reliable and sustainable operations. Predictive 
lifecycle governance, as offered by this type of framework, 
shifts asset management from fixed schedules to 
condition-validated, risk-informed and ESG-aligned 
maintenance strategies. By detecting failures earlier, 
enabling expert-validated decision and guided structured 
interventions, governed predictive maintenance becomes 
essential to achieving operational resilience and long-term 
performance. 

 
B.  ESG Alignment and Sustainable Finance Readiness 

 
The framework aligns predictive maintenance with 

evolving ESG regulations. By tracking improvements in 
asset durability, reducing Scope 1 and Scope 2 emissions 
and ensuring repair traceability, the framework helps 
refineries meet ESPR Annex II requirements, EU Energy 
Efficiency Directive screening criteria and upcoming DPP 
disclosure rules.  

Linking maintenance activities directly to ESG outcomes 
also enhances the refinery’s qualification for sustainable 
finance opportunities, such as green bonds and ESG-
focused investment assessments. 

 
C.  Operational Resilience and Industrial Risk 

Management 
 
Failures of critical rotating equipment poses serious 

operational, financial and environmental risks, including 
production loss, regulatory fines, safety incidents and high 
Scope 1 emissions from emergency flaring. The framework 
mitigates these risks by delivering early warnings of 
equipment degradation, improving the accuracy of RUL 
forecasts and guiding SME-approved maintenance based 
on secondary diagnostic. This shift from reactive to 
predictive maintenance boosts refinery resilience, reduces 
unplanned downtime and supports reliable, sustainable 
operations in a tightening regulatory environment. 

 
D.  Roadmap to Field Deployment and Continuous 

Improvement 
 
The framework is ready for immediate field deployment 

with initial pilots best focused on high-emission, high-
criticality assets like VFD-driven process motors. These 
should be scheduled around plant outages, ESG reporting 
deadlines and digital readiness. Key performance 
indicators (KPIs) should include MTBF improvement, 
Scope 1 emissions reduction per unit and DPP data 
completeness.  

As predictive maintenance expands across refinery 
asset fleets, ongoing operational learning will drive further 
optimization, extend asset lifecycles and embed ESG 
accountability into daily operations. The framework’s 
predictive insights also inform strategic decisions, such as 
input factor adjustments, retrofit planning and targeted 
replacements. Early degradation detection and RUL 
forecasting help operators allocate resources, manage 
spare parts and schedule upgrades more effectively during 

planned outages. This proactive lifecycle planning further 
strengthens operational efficiency, reduces lifecycle costs 
and supports sustainable asset management practices 
aligned with ESPR and EU Energy Efficiency Directive 
frameworks. 

The framework’s scalable, closed-loop architecture 
supports broader deployment across refineries, 
petrochemical sites and industrial energy infrastructures, 
enabling resilient, sustainable and digitally traceable 
operations. 

 
E.  Summary of Strategic Value Proposition 

 
Governed predictive maintenance has become a 

strategic imperative. The framework described here offers 
a scalable, structured approach that shifts refineries from 
reactive maintenance to predictive, ESG-aligned lifecycle 
management. By integrating advanced analytics, SME 
validation, CMMS workflows and ESG attribution, the 
framework bridges the gap between asset performance 
and sustainability objectives. 

Predictive lifecycle governance is not just an operational 
enhancement, it is a strategic pillar for refinery 
competitiveness, resilience and leadership in a 
decarbonized, digitally accountable world. 

The framework improves both operational expenditure 
(OPEX) and capital expenditure (CAPEX) by enabling 
early fault detection, optimizing L3+ condition-based 
interventions and planning proactive L4 overhauls. These 
actions reduce unplanned downtime, extend MTBF and 
defer major capital expenditures, lowering Total Cost of 
Ownership (TCO) while strengthening ESG performance 
and financial resilience. 

The framework is a digitally traceable, ESG-qualifiable 
platform that connects predictive insights to auditable 
maintenance actions tied to emissions and durability 
metrics. It aligns executive, operational, sustainability and 
financial priorities: 

• Maintenance teams benefit from longer MTBF 
and optimized maintenance execution 

• Operations teams improve uptime and process 
stability 

• Sustainability teams gain measurable Scope 1 
and 2 emissions reductions aligned with ESPR 
and EU Energy Efficiency Directive  

• Finance teams get improved asset utilization and 
sustainable financial readiness 

• Executive teams strengthen license to operate 
via regulatory compliance and strategic ESG 
positioning 

By closing the loop between predictive insight, governed 
execution and ESG impact, this framework positions 
refineries for long-term operational excellence and 
industrial transformation. 
  



VI.  CONCLUSIONS 
 

The reliability and lifecycle performance of rotating 
electrical equipment are now central to operational 
continuity and ESG accountability in refineries. Traditional 
maintenance approaches, whether time-based, condition-
based or predictive, often fall short in detecting complex, 
evolving degradation early enough to avoid unplanned 
failures, Scope 1 emissions and rising lifecycle costs.  

At the same time, emerging regulatory frameworks like 
ESPR, EU Energy Efficiency Directive, and Digital Product 
Passport (DPP) demand traceable durability, repairability 
and ESG-aligned maintenance practices. 

This mix of operational, regulatory and financial 
pressures raises a critical challenge: How can refineries 
predict, validate and govern maintenance in a way that 
supports resilience, reduces total lifecycle costs and meets 
sustainability reporting standards? 

This paper introduces, as a solution, a governed 
predictive maintenance strategy that uses a closed-
loop, analytics-driven maintenance framework. It is a 
framework that integrates multimodal sensing, hybrid 
analytics, SME validation, secondary diagnostics, CMMS 
generation and ESG-linked lifecycle metrics.  

. Case-driven validation showed  the ability to detect 
complex degradation early, forecast RUL with high 
confidence and deliver measurable gains in MTBF, Scope 
1/2 emissions reduction, repairability and sustainable 
financial readiness. This framework bridges the critical gap 
between early fault detection and auditable, ESG-
attributable maintenance execution, minimizing TCO while 
maximizing data-driven stewardship. 

In a future shaped by carbon neutrality goals, 
transparency mandates and sustainable finance criteria, 
governed predictive maintenance is no longer optional. It is 
a strategic necessity. 
Predictive reliability and integrity for sustainable 
maintenance across refineries and industrial sectors, they 
will redefine how asset reliability, sustainability and 
financial accountability come together in a digitally 
traceable, decarbonized future. 
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VIII.  NOMENCLATURE 

 
VFD Variable Frequency Drives 
TBM  Time-Based Maintenance 
CBM  Condition-Based Maintenance 
PDM Predictive Maintenance 
EU European Union 
ESPR Ecodesign for Sustainable Products 

Regulation 
EPREL European Product Registry for Energy 

Labelling 
DPP  Digital Product Passport 
CMMS Computerized Maintenance 

Management System 
SME  Subject Matter Expert 
ESG Environmental, Social, and 

Governance 
TEAM Thermal, Electrical, Ambient, and 

Mechanical stressors 
IGBT  Insulated-Gate Bipolar Transistor 
THD  Total Harmonic Distortion 
FIR Finite Impulse Response 
ESPD Early Shock Pulse Detection 
RMS  Root Mean Square 
FFT Fast Fourier Transform 
RUL  Remaining Useful Life 
OCSVM One-Class Support Vector Machines 
MTBF  Mean Time Between Failures 
OPEX  Operational Expenditure 
CAPEX Capital Expenditure 
TCO  Total Cost of Ownership 
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EXAMPLE DIGITAL PRODUCT PASSPORT (DPP) FOR A HIGH-EFFICIENCY MOTOR 

AND VARIABLE FREQUENCY DRIVE 
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Abstract - This appendix provides a completed example of a Digital Product Passport (DPP) for a typical industrial motor and 
variable frequency drive (VFD). It complies with the expected requirements under the Ecodesign for Sustainable Products 
Regulation (ESPR) and follows best practices for traceability, lifecycle management and sustainability reporting. This example 
DPP structure is aligned with ESPR Annex II. 
 

TABLE A-I 
SAMPLE CMMS WORK ORDER CLOSURE FORM — MOTOR AND VFD (UNIFIED TABLE) 

Section Field Motor Example VFD Example 

Work Order 
Information 

Work Order Number XXX XXX 

 Asset ID XXX XXX 
 Asset Name XXX XXX 
 Serial Number XXX XXX 
 Equipment Location Pump Station 4, Line A Pump Station 4, Line A 
 Functional Location PLANT-PS4-PUMP01 PLANT-PS4-VFD01 

Work Details Work Type Corrective Maintenance Corrective Maintenance 

 Activity Performed 
Bearing replacement, motor endshield 
inspection 

Cooling fan replacement, firmware 
inspection 

 Root Cause Bearing wear due to lubrication failure Overheating alarm; fan degradation 
 Parts Replaced Bearing Kit XXX Cooling Fan Assembly XXX 
 Service Instructions URL https://new.abb.com/... https://new.abb.com/... 
 Labor Hours 4.5 hours 2.0 hours 
 Technician(s) X. XXX X. XXX 

Digital Product 
Passport (DPP) 
Data 

DPP Version v1.0 v1.0 

 DPP Last Update Date 2025-03-15 2025-03-20 
 DPP Repository Link https://new.abb.com/... https://new.abb.com/... 
 Product Carbon Footprint (PCF)* 3.4 tCO₂e 2.1 tCO₂e 
 Recyclability Rate (%) 96% 91% 
 Repairability Score 8.5/10 7.8/10 

 Compliance Declarations 
CE Marked, RoHS Compliant, REACH 
Compliant 

CE Marked, RoHS Compliant, REACH 
Compliant 

 Digital Carrier Type QR Code on Terminal Box Cover QR Code on Label, RFID Embedded 

Final Status Asset Operational Status Restored to Service Restored to Service 
 Next Scheduled Maintenance 6,000 running hours or 12 months Firmware check at next service 

 Additional Observations 
Recommend enhanced lubrication 
monitoring 

Recommend adding fan runtime 
monitoring 

Sign-Off Technician Name X. XXX Y. YYY 
 Technician Sign-Off Date 2025-04-28 2025-04-28 
 Supervisor Name Y. YYY Y. YYY 
 Supervisor Sign-Off Date 2025-04-28 2025-04-28 

 Supervisor Comments** 
Repairs completed, DPP updated, ESPR 
compliance logged 

Repairs completed, DPP updated, ESPR 
compliance logged 

* PCF values estimated using component-level emission factors in accordance with ISO 14067. 
** ESG fields logged in CMMS and linked to DPP repository for audit traceability. 
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KPI DERIVATION METHODOLOGY 
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Abstract - This appendix presents a sample Digital 
Product Passport (DPP) for an industrial motor and VFD, 
structured aligned with the Ecodesign for Sustainable 
Products Regulation (ESPR). It illustrates how key 
maintenance events, repair actions, and ESG metrics –
such as carbon footprint, repairability, and recyclability – 
can be digitally reported and linked to CMMS workflows.  

 
BI.  MEAN TIME BETWEEN FAILURES (MTBF) 

IMPROVEMENT CALCULATION 
 

MTBF improvement was modeled as: 
 

 𝛥𝑀𝑇𝐵𝐹 (%) = (
𝑀𝑇𝐵𝐹 𝐴𝐹𝑇𝐸𝑅

𝑀𝑇𝐵𝐹 𝐵𝐸𝐹𝑂𝑅𝐸
− 1) ∗ 100                (1) 

 
where: 

• 𝛥𝑀𝑇𝐵𝐹 = Mean Time Between Failures 
improvement 

• 𝑀𝑇𝐵𝐹𝐵𝐸𝐹𝑂𝑅𝐸 = Simulated mean time between 
failures under conventional maintenance, 

• 𝑀𝑇𝐵𝐹𝐴𝐹𝑇𝐸𝑅 = Simulated mean time between 
failures after framework activation. 

Failure intervals were simulated based on degradation 
progression under TEAM stressor profiles. 

 
BII.  ENERGY EFFICIENCY GAIN CALCULATION 

 
Energy efficiency improvement was modeled as: 
 

𝛥  (%) = (
 𝐴𝐹𝑇𝐸𝑅− 𝐵𝐸𝐹𝑂𝑅𝐸

 𝐵𝐸𝐹𝑂𝑅𝐸

) ∗ 100                           (2) 

where: 

• 𝛥 = Energy efficiency gain 

• 
 𝐵𝐸𝐹𝑂𝑅𝐸

 = Simulated energy efficiency under 

conventional maintenance, 

• 
 𝐴𝐹𝑇𝐸𝑅

 = Simulated energy efficiency after 

framework activation. 
Before and After efficiencies were estimated based on 

THD profiles, mechanical balancing improvements, and 
operational optimization impacts. 

 
BIII.  SCOPE 1 EMISSIONS AVOIDANCE 

ESTIMATION 
 

Scope 1 emissions avoidance was estimated using: 
 

 𝐶𝑂₂𝑒 𝐴𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒 (𝑡) = 𝑁 𝐴𝑣𝑜𝑖𝑑𝑒𝑑 ∗ 𝐸𝐹 𝑆ℎ𝑢𝑡𝑑𝑜𝑤𝑛  (3) 
 
(Note: Emission factor (45 tCO₂e/event) based on API RP 
754 industry average for refinery emergency flaring 
events.) 

 
where: 

• 𝐶𝑂₂𝑒 𝐴𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒 (𝑡) = Emissions reduced by the 
energy efficiency action, expressed in metric 
tons CO₂e. 

• 𝑁 𝐴𝑣𝑜𝑖𝑑𝑒𝑑 = Number of unplanned shutdowns 
avoided by predictive interventions, 

• 𝐸𝐹 𝑆ℎ𝑢𝑡𝑑𝑜𝑤𝑛 = Average refinery flaring emissions 
per emergency shutdown, assumed at 45 tCOe 
per event, based on API Recommended 
Practice 754 [10]. 

 
BI.  SCOPE 2 EMISSIONS REDUCTION 

ESTIMATION 
 

Scope 2 emissions reductions were modeled as: 
 

 𝐶𝑂₂𝑒 𝑅𝑒𝑑𝑢𝑐𝑒𝑑 (𝑡) = 𝛥𝐸 ∗ 𝐸𝐹 𝐺𝑟𝑖𝑑                            (4) 
 

where: 

• 𝐶𝑂₂𝑒 𝑅𝑒𝑑𝑢𝑐𝑒𝑑 (𝑡) = Emissions reduced through 
electricity savings relative to baseline, expressed 
in metric tons of CO₂ equivalent. 

• 𝛥𝐸  = Annualized normalized energy savings 
(MWh/year), 

• 𝐸𝐹 𝐺𝑟𝑖𝑑 = Refinery grid carbon intensity, 
assumed at 500 kg CO₂/MWh, based on DOE 
[11]. 

 
BII.  EXAMPLE KPI CALCULATIONS 

 
1)  Example KPI Calculations for Synchronous 

Motor Driven Rotating Equipment 
MTBF Improvement Example: 

• Baseline MTBF = 24 months 

• Framework-enabled MTBF = 34 
months 

 

𝛥𝑀𝑇𝐵𝐹 (%) = (
34

24
− 1) ∗ 100 = 41.7% 

 
Energy Efficiency Gain Example: 

• Simulated energy efficiency under 
operation = 97.9% 

• Simulated energy efficiency after 
framework activation = 98.0% 

 

𝛥  (%) (
98.0 − 97.9

97.9
) ∗ 100 =  0.1% 

 
Scope 1 Emissions Avoidance Example: 

• Shutdowns avoided = 0.5 events/year 



• Flaring emission factor = 45 
tCO₂e/event 

 
𝐶𝑂₂𝑒 𝐴𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒 (𝑡) = 0.5 ∗ 45 = 22.5 𝑡𝐶𝑂 2𝑒 

 
Scope 2 Emissions Reduction Example: 

• Normalized energy savings = 201 
MWh/year 

• Grid CO₂ emission factor = 500 kg 

CO₂/MWh 
 

𝐶𝑂₂𝑒 𝑅𝑒𝑑𝑢𝑐𝑒𝑑 (𝑡) = 201 ∗
500

1000
= 101 𝑡𝐶𝑂 2𝑒/𝑎 

 
2)  Example KPI Calculations for VFD Driven 

Rotating Equipment:  
MTBF Improvement Example: 

• Baseline MTBF = 20 months 

• Framework-enabled MTBF = 27.2 
months 

(Note: Values derived from scenario-
informed degradation emulation, not field 
data.) 

 

𝛥𝑀𝑇𝐵𝐹 (%) = (
27.2

20
− 1) ∗ 100 = 36,0%         

 
Energy Efficiency Gain Example:  

• Simulated energy efficiency under 
operation = 88.0% 

• Simulated energy efficiency after 
framework activation = 92.3% 

 

𝛥 (%) (
92.3 − 88.0

88.0
) ∗ 100 =  4.9% 

 
Scope 2 Emissions Reduction Example:  

• Normalized energy savings = 25 
MWh/year 

• Grid CO₂ emission factor = 500 kg 

CO₂/MWh 
 

𝑆𝑐𝑜𝑝𝑒 2 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑡𝐶𝑂 2𝑒) = 25 ∗
500

1000
= 12.5 𝑡𝐶𝑂 2𝑒/𝑎 

 
 
(Note: Scope 1 emissions avoidance is not directly 
modeled for VFD degradation events unless full drive 
failure leads to emergency shutdown.) 
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